jueves, 29 de enero de 2009

resumen de la actividad 2

El nombre de química orgánica se le da a la parte de la química que estudia los compuestos del carbono, salvo el Sulfuro de Carbono, los Óxidos de Carbono y derivados. Ésta denominación viene de la creencia antigua y errónea de que sólo los seres vivos eran capaces de sintetizar los compuestos del carbono, sin embargo, aunque la diferencia clásica entre compuestos orgánicos e inorgánicos ha desaparecido, la expresión química orgánica subsiste enfatizada por varias razones, comenzando por el que todos los compuestos considerados orgánicos contengan carbono o que este elemento forma parte de un número casi ilimitado de combinaciones debido a la extraordinaria tendencia de sus átomos a unirse entre sí.
La química orgánica moderna se ocupa de los compuestos orgánicos de carbono de origen natural y también de los obtenidos en el laboratorio como algunos fármacos, alimentos, productos petroquímicos y carburantes.
Existen diferencias entre los compuestos orgánicos e inorgánicos en sus diferentes propiedades: Los compuestos orgánicos ofrecen una serie de características que los distinguen de los compuestos inorgánicos, de manera general se puede afirmar que los compuestos inorgánicos son en su mayoría de carácter iónico, solubles sobre todo en agua y con altos puntos de ebullición y fusión; en tanto, en los cuerpos orgánicos predomina el carácter covalente, sus puntos de ebullición y fusión son bajos, se disuelven en disolventes orgánicos no polares (cómo éter, alcohol, cloroformo y benceno), son generalmente líquidos volátiles o sólidos y sus densidades se aproximan a la unidad.
Por otra parte, los compuestos inorgánicos también se diferencian de los orgánicos en la forma como reaccionan, las reacciones inorgánicas son casi siempre instantáneas, iónicas y sencillas, rápidas y con un alto rendimiento cuantitativo, en tanto las reacciones orgánicas son no iónicas, complejas y lentas, y de rendimiento limitado, realizándose generalmente con el auxilio de elevadas temperaturas y el empleo de catalizadores.
Por otra parte, en la actualidad existen tres tipos de nomenclatura: la Stock en honor al químico Alemán Alfred Stock, la nomenclatura tradicional y la establecida por la I.U.P.A.C. (Unión Internacional de Química Pura y Aplicada), llamada también funcional o sistemática, con el tiempo se espera que esta última sustituya el uso de los otros sistemas de nomenclatura.
Para aplicar los sistemas de nomenclatura es importante conocer los grupos de compuestos donde ésta será aplicada; y en los Compuestos inorgánicos: Los compuestos inorgánicos se agrupan en funciones químicas, las cuales se caracterizan por un átomo o grupo de átomos que siempre está presente.
Existen diferencias más importantes se encuentran:
-Todos los compuestos orgánicos utilizan como base de construcción al átomo de carbono y unos pocos elementos más, mientras que en los compuestos inorgánicos participan a la gran mayoría de los elementos conocidos.
-En su origen los compuestos inorgánicos se forman ordinariamente por la acción de las fuerzas fisicoquímicas: fusión, sublimación, difusión, electrolisis y reacciones químicas a diversas temperaturas. La energía solar, el oxígeno, el agua y el silicio han sido los principales agentes en la formación de estas sustancias.
-Las sustancias orgánicas se forman naturalmente en los vegetales y animales pero principalmente en los primeros, mediante la acción de los rayos ultravioleta durante el proceso de la fotosíntesis: el gas carbónico y el oxígeno tomados de la atmósfera y el agua, el amoníaco, los nitratos, los nitritos y fosfatos absorbidos del suelo se transforman en azúcares, alcoholes, ácidos, ésteres, grasas, aminoácidos, proteínas, etc., que luego por reacciones de combinación, hidrólisis y polimerización entre otras, dan lugar a estructuras más complicadas y variadas.
-La totalidad de los compuestos orgánicos están formados por enlace covalentes, mientras que los inorgánicos lo hacen mediante enlaces iónicos y covalentes.
-La mayoría de los compuestos orgánicos presentan isómeros (sustancias que poseen la misma fórmula molecular pero difieren en sus propiedades físicas y químicas); los inorgánicos generalmente no presentan isómeros.
-Los compuestos orgánicos encontrados en la naturaleza, tienen origen vegetal o animal, muy pocos son de origen mineral; un buen número de los compuestos inorgánicos son encontrados en la naturaleza en forma de sales, óxidos, etc.

lunes, 26 de enero de 2009

resumen grupal

Todo lo que nos rodea esta formado por materia, al observar en nuestro alrededor se pueden distinguir las distintas clases de materia que forman los cuerpos que nos rodean y se pueden presentar con diferentes cambios, a la evolución de la materia entre varios estados de agregación sin que ocurra un cambio en su composición. Los tres estados básicos son el sólido, el líquido y el gaseoso.
En relación con los modelos atómicos, se puede decir que ha medida que los científicos fueron conociendo la estructura del átomo a través de experimentos modificaron su modelo atómico, para ajustarse a los datos experimentales, el físico británico Joseph John Thomson observó que los átomos contienen cargas negativas y positivas, mientras que su compatriota Ernest Rutherford descubrió que la carga positiva del átomo está concentrada en un núcleo. El físico danés Niels Bohr propuso la hipótesis de que los electrones sólo describen órbitas en torno al núcleo a determinadas distancias, y su colega austriaco Erwin Schrödinger descubrió que, de hecho, los electrones de un átomo se comportan más como ondas que como partículas.
Es de relevancia señalar, la importancia de la tabla periódica, ya que ella radica en el hecho de que mediante el conocimiento de las propiedades y las tendencias generales dentro de un grupo o periodo, se predicen las propiedades de cualquier elemento. El sistema periódico o Tabla periódica, esta dispuestos por orden de número atómico creciente y en una forma que refleja la estructura de los elementos. Los elementos están ordenados en siete hileras horizontales, llamadas periodos, y en 18 columnas verticales, llamadas grupos. El primer periodo, que contiene dos elementos, el hidrógeno y el helio, y los dos periodos siguientes, cada uno con ocho elementos, se llaman periodos cortos. Los periodos restantes, llamados periodos largos, contienen 18 elementos en el caso de los periodos 4 y 5, o 32 elementos en el del periodo 6. El periodo largo 7 incluye el grupo de los actínidos, que ha sido completado sintetizando núcleos radiactivos más allá del elemento 92, el uranio. Los grupos o columnas verticales de la tabla periódica fueron clasificados tradicionalmente de izquierda a derecha utilizando números romanos seguidos de las letras “A” o “B”, en donde la “B” se refiere a los elementos de transición. La tabla periódica se ha convertido indiscutiblemente en una herramienta de gran utilidad para la química moderna.
De igual forma, la química orgánica es la rama de la química en la que se estudian el carbono, sus compuestos y reacciones; esta rama de la química ha afectado profundamente a la vida en el siglo XX, perfeccionando los materiales naturales y sintetizando sustancias naturales y artificiales que, a su vez, han mejorado la salud, han aumentado el bienestar y han favorecido la utilidad de casi todos los productos empleados en la actualidad. La química inorgánica históricamente empezó con el estudio de los minerales y la búsqueda de formas de extracción de los metales a partir de los yacimientos
La periodicidad indica que lo elementos que pertenecen a un mismo grupo o familia de la tabla periódica tienen propiedades muy similares. por otra parte, la química orgánica, tiene muchas utilidades en la vida del hombre y de toda las actividades que el realiza y estamos en contacto con muchos sucesos que tienen relación con la química cuando comemos, cada uno de nuestros alimentos contienen sustancias y nutrientes que al combinarse nos dan energía y nos hacen tener la fuerza suficiente para movernos y realizar todas nuestras actividades, cuando nos enfermamos también estamos en contacto con la química a través de los medicamentos y para mantener nuestra salud las vacunas y sueros forman parte de ellos, el petróleo es otro producto que gracias a él, el hombre puede realizar actividades como desplazarse de un sitio a otro, tener electricidad y en muchos países como, el caso de Venezuela representa la principal fuente de ingresos del país. La química inorgánica, su utilidad es para la elaboración de productos fertilizantes, los vidrios de ventanas, botellas, televisores, las pantallas LCD, el cable de fibra óptica.
También, la cinética molecular se basa en que todo lo que vemos está formado por unas partículas muy pequeñas, que son invisibles aún a los mejores microscopios y que se llaman moléculas. Las moléculas están en continuo movimiento y entre ellas existen fuerza atractivas, llamadas fuerzas de cohesión. Las moléculas al estar en movimiento, se encuentran a una cierta distancia unas de otras. Entre las moléculas hay espacio vacío, en el estado sólido las moléculas están muy juntas y se mueven oscilando alrededor de unas posiciones fijas; las fuerzas de cohesión son muy grandes. En el estado líquido las moléculas están más separadas y se mueven de manera que pueden cambiar sus posiciones, pero las fuerzas de cohesión, aunque son manos intensas que en el estado sólido, impiden que las moléculas puedan independizarse. En el estado gaseoso las moléculas están totalmente separadas unas de otras y se mueven libremente; no existen fuerzas de cohesión.
Por otra parte, las propiedades físicas del agua dependen de su estado; es decir, sólido, liquido y gaseoso, es incolora insípida inodora con una densidad: 1 g. /c.c. a 4°, su punto de congelación: 0°, el punto de ebullición: 100°, la presión critica: 217,5 atm, la temperatura crítica: 374°C. También, las propiedades químicas del agua, se dan cuando reacciona con los óxidos ácidos, básicos, con los metales y no metales; y por último, se une en las sales formando hidratosde carbono e hidrógeno (gas de agua).
Se comentan algunas de las más importantes propiedades fisicoquímicas del citado fluido, esenciales para el surgimiento y mantenimiento de la vida en nuestro planeta, ya que es un componente de la naturaleza que ha estado presente en está desde hace unos tres mil millones de años. Constituye también la biomolécula más importante. El agua, a pesar de ser muy simple pues está compuesta por sólo tres átomos, constituye una molécula de extraño comportamiento. Sin embargo, los organismos vivos dependen absolutamente de ella para su existencia, por lo cual se dice que el agua constituye el líquido de la vida. Hoy por hoy, la química es la base de una enorme gama de ciencia y tecnología con tremendos beneficios, todo lo que comemos, todas las medicinas, todos los productos de limpieza e higiene personal, dependen en gran medida gracias a la química de muchos fenómenos biológicos y las técnicas para evitar efectos indeseables. Finalmente la química nos ha servido para dejar de pensar que una gran parte de los cambios que suceden a nuestro alrededor son impredecibles o divinos y comenzar a comprender los principios por los que se rigen y eso, como casi todo conocimiento, ha podido ser usado

martes, 20 de enero de 2009

compuestos organico e inorganicos

La química es una de las ciencias fundamentales para comprender al mundo material y sin duda una de las que tiene más y más importantes aplicaciones practicas. Aunque no pensemos habitualmente en ello. En cualquier momento de nuestra vida se están desarrollando en nuestro entorno un sinfín de procesos químicos, e incluso nuestra propia existencia como seres vivos se apoya, en última instancia, en un sustrato de continuas trasformaciones a escala molecular que la química está en condiciones e comprender. Como ciencia, la química es, a la vez una ciencia de lo general y de lo particular, proponiéndose, por un lado encontrar las leyes generales que rigen las modificaciones profundas y permanentes que afectan a la naturaleza de os cuerpos puros que, tras entrar en contacto, se intercambian algunos de sus de sus constituyentes elementos y, por otro, inventariar esos cuerpos y describir sus propiedades características.
Históricamente, la química es un saber antiguo y una ciencia reciente: el hombre primitivo ya era un químico práctico y sus descendientes durante muchos siglos siguieron siéndolo. Hubo que esperar hasta la época de la Revolución Francesa para que se empezase a consolidar el método experimental en la investigación de la estructura de la materia y sus transformaciones de las dos grandes ramas en que por razones históricas pedagógicas y de orden practico se considera dividida química, la primera que se desarrolló fue la Química Inorgánicas que se ocupa de todos loa elementos y compuestos excepto d los del carbono, de los cuales se trata en el apartado de la Química Orgánica. Así mismo, la industria química nació y se consolidó en la producción de compuestos inorgánicos que tienen numerosas e importantes aplicaciones.
Los Compuesto inorgánico Se denomina compuesto inorgánico a todos aquellos compuestos que están formados por distintos elementos, pero en los que su componente principal no siempre es el carbono, siendo el agua el más abundante. En los compuestos inorgánicos se podría decir que participa casi la totalidad de elementos conocidos
La Formación de Compuestos Inorgánicos, Mientras que un compuesto orgánico se forma de forma natural tanto en animales como en vegetales, uno inorgánico se forma de manera ordinaria por la acción de distintas fuerzas físicas y químicas; electrólisis, fusión...
También podrían considerarse agentes de la creación de estas sustancias a la energía solar, el agua, el oxígeno... Los enlaces que forman los compuestos inorgánicos suelen ser iónicos o covalentes.
Ejemplos de compuestos inorgánicos:
El Cloruro de Sodio (NaCl), es igual a un átomo de Sodio y un átomo de Cloro
El agua (H2O) es igual a dos átomos de hidrógeno y un átomo de oxígeno.
El amoniaco (NH3) es igual a un átomo de nitrógeno y tres de hidrógeno.
El anhídrido carbónico, el cual se encuentra en la atmósfera en estado gaseoso y los seres vivos lo eliminan hacia ella a través de la respiración. Su fórmula química es CO2, o sea, un átomo de carbono y dos de oxígeno. El CO2 es ocupado por los vegetales en el proceso de fotosíntesis para fabricar glucosa. Es importante aclarar que el CO2, aunque contiene carbono, no es orgánico porque tampoco contiene hidrógeno.
Pf y Pb Los compuestos inorgánicos tienen altos puntos de fusión y de ebullición, debido a su enlace iónico el cual es fuerte y estructurado. El enlace covalente es comparativamente más fácil de debilitar por calentamiento, lo que hace que tengan bajos puntos de fusión y de ebullición.
Los Elementos químicos: una situación contradictoria, los compuestos inorgánicos existen en menor medida que los orgánicos, pero en su composición intervienen los 93 elementos naturales de la tabla periódica. Los compuestos orgánicos en donde priman en este orden C, H, O, N, S y casi ninguno más se cuentan entre los más numerosos. Esto se debe a la asombrosa capacidad del carbono de formar cadenas larguísimas y ramificadas.

La química orgánica, que históricamente tuvo como campo de estudio los compuestos del carbono que los seres vivos sintetiza en su células, se ocupa hoy en general del estudio de todos compuestos de carbono excepto los mas sencillos, que como los óxidos de carbono o los carbonatos, existirían en la litosferas y la atmósfera terrestre aún en el caso de que nuestro planeta no poseyese una biosfera, es decir, no soportara vida. El número de compuestos orgánicos conocidos es muy elevado, ya que a los numerosos compuestos de origen biológico hay que añadir un número aun mayor de compuestos de síntesis.
En este sentido, el progreso de la química orgánica a lo largo de los últimos ciento cincuenta años ha sido espectacular. Desde que en la década de 1960 se hiciese potente la falsedad de la hipótesis de la “fuerza vital”, según la cual, los compuestos orgánicos solo pueden ser producidos por los seres vivos, la síntesis de compuestos orgánicos de origen biológico se convirtió en el objetivo de muchos químicos, que lograron pronto éxitos importantes. Hoy se a logrado sintetizar incluso hormonas y encimas de compleja estructura molecular, que están disponibles para la terapia disfunciones endocrinológicas y de otro tipo.
Por otra parte, la síntesis de compuestos orgánicos que no están presentes en la naturaleza ha dado origen a nuevas ramas de la industrias desde loa fármacos a los plásticos, la pinturas a los adhesivos , la variedad y la importancia de los nuevos compuestos de síntesis difícilmente podría exagerase. La mayor parte de ellos tienen sus orígenes en el petróleo, aunque si esta preciosa materia prima llegarse a agotarse, también podría obtenerse a partir el carbón.
Los compuestos orgánicos también son llamados química orgánica... Ciertamente este es un término bastante generalizado que pretende explicar la química de los compuestos que contienen carbono, excepto los carbonatos, cianuros y óxidos de carbono.
Muchas veces se creyó que los compuestos llamados orgánicos se producían solamente en los seres vivos como consecuencia de una fuerza vital que operaba en ellos, creencia que encontraba mucho apoyo ya que nadie había sintetizado algún compuesto orgánico en un laboratorio. Sin embargo en 1828, el químico alemán Friedrich Wohler (1800-1882) puso fin a la teoría vitalista cuando logro sintetizar urea haciendo reaccionar las sustancias inorgánicas conocidas como cianato de potasio y cloruro de amonio.
Durante mucho tiempo el estudio de la química a sido y será algo elemental para completarnos a nivel escolar y profesional, investigar sobre cada una de sus ramas es algo esencial. En este trabajo nos a tocado hablar sobre los compuestos orgánicos (aquellos q contienen carbono entre otros elementos) y hablaremos sobre algunos de los mas importantes.
La importancia de realizar estos trabajos radica la técnica de aprendizaje y la facilidad con los q estos logran saciar las ansias de aprender, esperando q mi investigación sea de su disfrute lo invito a leerla y a colaborar no solo con esta sino con todas.

Compuesto orgánico
Los compuestos orgánicos son todas las especies químicas que en su composición contienen el elemento carbono y, usualmente, elementos tales como el Oxígeno (O), Hidrógeno (H), Fósforo (F), Cloro (CL), Yodo (I) y nitrógeno (N), con la excepción del anhídrido carbónico, los carbonatos y los cianuros.
Son sustancias químicas que contienen carbono, formando enlaces covalentes carbono-carbono y/o carbono-hidrógeno. En muchos casos contienen oxígeno, y también nitrógeno, azufre, fósforo, boro, halógenos y otros elementos. Estos compuestos se denominan Moléculas orgánicas. No son moléculas orgánicas los compuestos que contienen carburos, los carbonatos y los óxidos de carbono.
Las moléculas orgánicas pueden ser de dos tipos:
Moléculas orgánicas naturales: Son las sintetizadas por los seres vivos, y se llaman biomoléculas, las cuales son estudiadas por la bioquímica.
Moléculas orgánicas artificiales: Son sustancias que no existen en la naturaleza y han sido fabricadas por el hombre como los plásticos.
La línea que divide las moléculas orgánicas de las inorgánicas ha originado polémicas e históricamente ha sido arbitraria, pero generalmente, los compuestos orgánicos tienen carbono con enlaces de hidrógeno, y los compuestos inorgánicos, no. Así el ácido carbónico es inorgánico, mientras que el ácido fórmico, el primer ácido graso, es orgánico. El anhídrido carbónico y el monóxido de carbono, son compuestos inorgánicos. Por lo tanto, todas las moléculas orgánicas contienen carbono, pero no todas las moléculas que contienen carbono, son moléculas orgánicas.
3. Características de los Compuestos Orgánicos:
o Son Combustibles
o Poco Densos
o Electro conductores
o Poco Hidrosolubles
o Pueden ser de origen natural u origen sintético
o Tienen carbono
o Casi siempre tienen hidrogeno
o Componen la materia viva
o Su enlace mas fuerte en covalente
o Presentan isomería
o Existen mas de 4 millones
o Presentan concatenación
Tipos de compuestos orgánicos
El carbono es singularmente adecuado para este papel central, por el hecho de que es el átomo más liviano capaz de formar múltiples enlaces covalentes. A raíz de esta capacidad, el carbono puede combinarse con otros átomos de carbono y con átomos distintos para formar una gran variedad de cadenas fuertes y estables y de compuestos con forma de anillo. Las moléculas orgánicas derivan sus configuraciones tridimensionales primordialmente de sus esqueletos de carbono. Sin embargo, muchas de sus propiedades específicas dependen de grupos funcionales. Una característica general de todos los compuestos orgánicos es que liberan energía cuando se oxidan.
En los organismos se encuentran cuatro tipos diferentes de moléculas orgánicas en gran cantidad: carbohidratos, lípidos, proteínas y nucleótidos. Todas estas moléculas contienen carbono, hidrógeno y oxígeno. Además, las proteínas contienen nitrógeno y azufre, y los nucleótidos, así como algunos lípidos, contienen nitrógeno y fósforo.
*Los carbohidratos son la fuente primaria de energía química para los sistemas vivos. Los más simples son los monosacáridos ("azúcares simples"). Los monosacáridos pueden combinarse para formar disacáridos ("dos azúcares") y polisacáridos (cadenas de muchos monosacáridos).
*Los lípidos son moléculas hidrofóbicas que, como los carbohidratos, almacenan energía y son importantes componentes estructurales. Incluyen las grasas y los aceites, los fosfolípidos, los glucolípidos, los esfingolípidos, las ceras, y esteroides como el colesterol.
*Las proteínas son moléculas muy grandes compuestas de cadenas largas de aminoácidos, conocidas como cadenas polipeptídicas. A partir de sólo veinte aminoácidos diferentes se puede sintetizar una inmensa variedad de diferentes tipos de moléculas proteínicas, cada una de las cuales cumple una función altamente específica en los sistemas vivos.
*Los nucleótidos son moléculas complejas formadas por un grupo fosfato, un azúcar de cinco carbonos y una base nitrogenada. Son los bloques estructurales de los ácidos desoxirribonucleico (ADN) y ribonucleico (ARN), que transmiten y traducen la información genética. Los nucleótidos también desempeñan papeles centrales en los intercambios de energía que acompañan a las reacciones químicas dentro de los sistemas vivos. El principal portador de energía en la mayoría de las reacciones químicas que ocurren dentro de las células es un nucleótido que lleva tres fosfatos, el ATP.
Propiedades de los Compuestos Orgánicos
· En general, los compuestos orgánicos covalentes se distinguen de los compuestos inorgánicos en que tienen puntos de fusión y ebullición más bajos. Por ejemplo, el compuesto iónico cloruro de sodio (NaCl) tiene un punto de fusión de unos 800 °C, pero el tetracloruro de carbono (CCl4), molécula estrictamente covalente, tiene un punto de fusión de 76,7 °C. Entre esas temperaturas se puede fijar arbitrariamente una línea de unos 300 °C para distinguir la mayoría de los compuestos covalentes de los iónicos.
· Gran parte de los compuestos orgánicos tienen los puntos de fusión y ebullición por debajo de los 300 °C, aunque existen excepciones. Por lo general, los compuestos orgánicos se disuelven en disolventes no polares (líquidos sin carga eléctrica localizada) como el octano o el tetracloruro de carbono, o en disolventes de baja polaridad, como los alcoholes, el ácido etanoico (ácido acético) y la propanona (acetona). Los compuestos orgánicos suelen ser insolubles en agua, un disolvente fuertemente polar.
· Los hidrocarburos tienen densidades relativas bajas, con frecuencia alrededor de 0,8, pero los grupos funcionales pueden aumentar la densidad de los compuestos orgánicos. Sólo unos pocos compuestos orgánicos tienen densidades mayores de 1,2, y son generalmente aquéllos que contienen varios átomos de halógenos.
· Los grupos funcionales capaces de formar enlaces de hidrógeno aumentan generalmente la viscosidad (resistencia a fluir). Por ejemplo, las viscosidades del etanol, 1,2-etanodiol (etilenglicol) y 1,2,3-propanotriol (glicerina) aumentan en ese orden. Estos compuestos contienen uno, dos y tres grupos OH respectivamente, que forman enlaces de hidrógeno fuertes.
Nomenclatura química de los compuestos inorgánicos
Para iniciar el estudio de la nomenclatura es necesario distinguir primero entre compuestos orgánicos e inorgánicos. Los compuestos orgánicos contienen carbono, comúnmente en combinación con elementos como hidrógeno, oxígeno, nitrógeno y azufre. El resto de los compuestos se clasifican como compuestos inorgánicos. Éstos se nombran según las reglas establecidas por la IUPAC.
Nomenclaturas
Se aceptan tres tipos de nomenclaturas para nombrar compuestos químicos inorgánicos:
Nomenclatura sistemática: para nombrar de este modo se usan prefijos numéricos excepto para indicar que el primer elemento de la fórmula solo aparece una vez (mono) o cuando no puede haber confusión posible debido a que tiene una única valencia. En adelante, N.ss
Prefijos griegos Número
mono- 1
di- 2
tri- 3
tetra- 4
penta- 5
hexa- 6
hepta- 7
octa- 8
nona- (o eneá) 9
deca- 10
Por ejemplo, CrBr3 = tribromuro de cromo; CO = monóxido de carbono
En casos en los que puede haber confusión con otros compuestos (sales dobles y triples, oxisales y similares) se pueden emplear los prefijos bis-, tris-, tetras-, etc.
Ejemplo: Ca5F (PO4)3 = fluoruro tris (fosfato) de calcio, ya que si se usara el término trifosfato se estaría hablando del anión trifosfato [P3O10]5-, en cuyo caso sería:
Ca8F (P3O10)3
Nomenclatura Stock: en este caso, cuando el elemento que forma el compuesto tiene más de una valencia atómica, se indica en números romanos al final y entre paréntesis. Normalmente, a menos que se haya simplificado la fórmula, la valencia puede verse en el subíndice del otro átomo (en compuestos binarios). En adelante, N.st
Ejemplo: Fe2S3 Sulfuro de hierro (III) [se ve la valencia III en el subíndice del azufre]
Nomenclatura tradicional: aquí se indica la valencia del elemento que forma el compuesto con una serie de prefijos y sufijos griegos. En adelante, N.tr.
Cuando el elemento sólo tiene una valencia, se usa el sufijo -ico.
Cuando tiene dos valencias diferentes se usan (de menor a mayor valencia)
-oso
-ico
Cuando tiene tres distintas se usan (de menor a mayor)
hipo- -oso
-oso
-ico
Y cuando tiene cuatro se utilizan (de menor a mayor)
hipo- -oso
-oso
-ico
per- -ico
Ejemplo: Mn2O7 Óxido permangánico
Cuando tiene 5 se utilizan (de menor a mayor)
hipo- -oso
-oso
-ico
per- -ico
hiper- -ico
Óxidos
Son compuestos químicos inorgánicos binarios formados por la unión del oxígeno con otro elemento diferente a los gases nobles. Según si este elemento es metal o no metal serán óxidos básicos u óxidos ácidos. El oxígeno siempre tiene valencia -2. Su grupo funcional es el ión oxígeno (O2).
Los óxidos se pueden nombrar en cualquiera de las nomenclaturas; si se utiliza la sistemática no se tienen en cuenta las valencias sino que se menciona el prefijo de acuerdo al número que posea el oxígeno como subíndice, si se utiliza la Stock el número romano es igual a la valencia del elemento, si se utiliza la común el sufijo es de acuerdo a la valencia del elemento.
Óxidos básicos (metálicos)
Son aquellos óxidos que se producen entre el oxígeno y un metal. Su fórmula general es Metal2Ox. Si la valencia del metal es par, se simplifica. Cuando un óxido básico reacciona con el agua (H2O) se forma una base o hidróxido, Ej. CuO + H2O = Cu (OH)2. La nomenclatura Stock es la más frecuente. En la nomenclatura tradicional se nombran con el sufijo -oso e -ico dependiendo de la menor o mayor valencia del metal que acompaña al oxígeno.
Ejemplo
Nomenc. sistem. Nomenc . StockNomenc. tradic.
K2O monóxido de dipotasio óxido de potasio óxido de potasio
Fe2O3 trióxido de dihierro óxido de hierro (III) óxido férrico
FeO monóxido de hierro óxido de hierro (II) óxido ferroso
SnO2 dióxido de estaño óxido de estaño (IV) óxido estáñico
En algunos óxidos llamados óxidos dobles (Fe3O4, Pb3O4), los átomos del elemento que forma el óxido tienen diferente valencia (FeIIFeIII2O4=Fe3O4).
Óxidos ácidos o anhídridos (no metálicos)
Son aquellos formados por la combinación del oxígeno con un no metal. Su fórmula general es No Metal2Ox. De ser posible, se simplifica. En este caso, la nomenclatura tradicional emplea la palabra anhídrido en lugar de óxido, a excepción de algunos óxidos de nitrógeno. La nomenclatura sistemática es la más frecuente. En la nomenclatura tradicional se nombran con los siguientes sufijos y prefijos en orden de menor a mayor valencia del no metal
hipo- -oso
-oso
-ico
per- -ico o hiper- -ico
Ejemplo Nomenc. sistem. Nomenc. Stock Nomenc. tradicional
F2O monóxido de diflúor óxido de flúor anhídrido hipofluoro
SO3 trióxido de azufre óxido de azufre (VI) anhídrido sulfúrico
Cl2O7 heptóxido de dicloro óxido de cloro (VII) anhídrido perclórico
Hidróxidos
Son compuestos formados por la unión de un óxido básico con el agua. Para formularlo, se escribe el metal y el grupo hidroxilo OH, que siempre tiene valencia (-1). La fórmula general es M (OH)x siendo x la valencia del metal. La nomenclatura Stock es la más frecuente. Aquí la nomenclatura sistemática no antepone el prefijo mono cuando solo hay un OH.
Ejemplo Nomenclatura sistemática. Nomenclatura Stock. Nomenclatura tradicional
LiOH hidróxido de litio . hidróxido de litio. hidróxido lítico.
Pb (OH)2 dihidróxido de plomo. hidróxido de plomo (II). hidróxido plumboso .
Al (OH)3 trihidróxido de aluminio. hidróxido de aluminio. hidróxido alumínico.
Acidos .
Oxiácidos (u oxácidos u oxoácidos o ácidos oxigenado)
Son compuestos ternarios formados por oxígeno, hidrógeno y un no metal. Se obtienen al agregar una molécula de agua al correspondiente óxido ácido. Su fórmula general es H2O+N2Ox=HaNbOc (aquí N es un no metal) La nomenclatura funcional es ácido oxo-, dioxo-, trioxo-(según número de O) + no metal terminado en -ico seguido de la valencia en números romanos entre paréntesis. Si hay más de un átomo del no metal, este también lleva prefijo. La nomenclatura sistemática es oxo-, dioxo- (según número de oxígenos) + no metal terminado en -ato seguido de la valencia en números romanos entre paréntesis + "de hidrógeno". Si hay más de un átomo del no metal, este también lleva prefijo. La nomenclatura tradicional no cambia con respecto a compuestos anteriores; tan sólo empieza por la palabra "ácido". Esta nomenclatura es la más frecuente.
Ejemplo
SO+H2O=H2SO2
ácido dioxosulfúrico (II). Nom. funcional
ioxosulfato (II) de hidrógeno. Nom. sistemática
ácido hiposulfuroso. Nom. tradicional

Cl2O7+H2O=H2Cl2O8=HClO4
ácido tetraoxoclórico (VII). Nom. funcional
tetraoxoclorato (VII) de hidrógeno. Nom. sistemática
ácido perclórico Nom. tradicional

SO3+H2O=H2SO4
ácido tetraoxosulfúrico (VI) Nom. funcional
tetraoxosulfato (VI) de hidrógeno .Nom. sistemática
ácido sulfúrico. Nom. tradicional

El nitrógeno no forma oxiácidos con todas sus valencias, sino que lo hace sólo con la 3 y la 5. Por otra parte, el fósforo, el arsénico y el antimonio forman ácidos especiales según se agregue 1, 2 ó 3 moléculas de agua llevando los prefijos meta-, piro- (o di-) y orto-, respectivamente, en la nomenclatura tradicional (se puede omitir el prefijo en el caso orto-).
Hidrácidos
Son aquellos hidruros no metálicos que forman disolución ácida en agua, se nombran de forma diferente según si están disueltos o en estado puro. Son los formados por S, Se, Te, F, Cl, Br e I. Si están puros se nombran de la forma -uro de hidrógeno y si están disueltos, ácido -hídrico.
Ejemplo en estado puro. en disolución
HF fluoruro de hidrógeno. ácido fluorhídrico
HCl cloruro de hidrógeno. ácido clorhídrico
HBr bromuro de hidrógeno. ácido bromhídrico
HI yoduro de hidrógeno. ácido yodhídrico
H2S sulfuro de hidrógeno. ácido sulfhídrico
H2Se selenuro de hidrógeno. ácido selenhídrico
H2Te teluro de hidrógeno. ácido telurhídrico
Sales:
Sales de oxoácidos (u oxisales u oxosales) Se trata de compuestos ternarios formados a partir de oxoácidos sustituyendo los hidrógenos por un metal, es decir, metal, no metal y oxígeno. También se puede decir que son compuestos ternarios que resultan de la unión de un metal con un radical (un no metal con oxígeno) Hay dos tipos:
Sales neutras
Son aquellas oxisales que han sustituido todos sus hidrógenos por un metal. La nomenclatura Stock y la sistemática coinciden. La tradicional es igual que las anteriores salvo en que los sufijos -oso e -ico se sustituyen por -ito y -ato respectivamente. La nomenclatura tradicional es la más frecuente.
Ejemplo Nomenclatura sistemática y Stock Nomenclatura tradicional
Zn2SiO4 tetraoxosilicato (IV) de zinc. silicato de zinc
Fe4(P2O7)3 heptaoxodifosfato (V) de hierro (III). pirofosfato férrico
Al2(SO4)3 tetraoxosulfato (VI) de aluminio. sulfato de aluminio o alumínico
Sales ácidas
Son aquellas sales en las que sólo se han sustituido parte de los hidrógenos. Se les nombra anteponiendo al nombre hidrógeno-, dihidrógeno-. En la nomenclatura tradicional también se puede indicar anteponiendo bi- si se ha quitado un hidrógeno.
Ejemplo Nomenclatura sistemática y Stock Nomenclatura tradicional
NaHSO4 hidrógenotetraoxosulfato (VI) de sodio. hidrógenosulfato sódico o bisulfato sódico
KH2PO4 dihidrógenotetraoxofosfato (V) de potasio . dihidrógenofosfato (V) potásico
Ca (HCO3)2 hidrógenotrioxocarbonato (IV) de calcio. hidrógeno carbonato o bicarbonato cálcico
Sales Haloideas: Son compuestos por un metal unido a un no metal. El símbolo del metal se deberá colocar hacia la izquierda y el del no metal hacia la derecha. Estos compuestos se nombran haciendo terminar la raíz del nombre del no metal en "URO" seguida del nombre del metal.
Cloruro de Aluminio AlCl3
Cloruro de Calcio CaCl2
Fluoruro de Zinc ZnF2
Sulfuro de Cobre (II) Cu2S2 = CuS
Cloruro de Hierro (III) FeCl3
Sulfuro de Níquel (III) Ni2S3
Cloruro de Sodio NaCl

FORMULACIÓN DE COMPUESTOS QUÍMICOS
ESQUEMA GENERAL DE LA NOMENCLATURA INORGÁNICA

ELEMENTOS
NÚMEROS DE OXIDACIÓN
NO METALES

METALES

GRUPOS



COMPUESTOS
BINÁRIOS
OXÍGENO
METAL
ÓXIDOS BÁSICOS
PERÓXIDOS
NO METAL
ÓXIDOS ÁCIDOS
(ANHÍDRIDOS)

HIDRÓGENO
METAL
HIDRUROS METÁLICOS
NO METAL
HALUROS DE HIDRÓGENO
SEMIMETAL
HIDRUROS VOLÁTILES

SALES
METAL+NO METAL
SALES NEUTRAS
NO METAL+NO METAL
SALES VOLÁTILES

COMPUESTOS
TERCIARIOS
ÓXIDO ÁCIDO + AGUA
ÁCIDOS OXOÁCIDOS
PEROXOÁCIDOS
TIOÁCIDOS
ÓXIDOS BÁSICOS + AGUA
HIDRÓXIDOS

OXISALES
SALES NEUTRAS


COMPUESTOS
CUATERNARIOS
SALES ÁCIDAS


SALES BÁSICAS

COMPUESTOS ORGÁNICOS
CLASIFICACIÓN DE LOS COMPUESTOS ORGÁNICOS
HIDROCARBUROS
Nombre de la función Grupo funcional y fórmula general Ejemplo
Alcanos (Parafinas) - CH2-CH2 - CnH2n+2 CH3-CH2-CH2-CH3 Butano
Alquenos (Olefinas) -CH=CH- CnH2n CH2=CH-CH3 Propeno
Alquinos (Acetilenos) -CC- CnH2n-2 CHC-CH3 Propino
Hidrocarburos cíclicos CH2-CH2-CH2 CH2-CH2-CH2 C6H12 Cicloexano
Hidrocarburos aromáticos C6H6 Benceno
Derivados halogenados R-X CH3-CH2-CH2-Cl cloropropano
Diferencias de los compuestos orgánicos e inorgánicos
Compuestos Orgánicos
*Se utilizan como base de construcción al átomo de carbono y unos pocos elementos más.
*Se forman naturalmente en los vegetales y animales pero principalmente en los primeros, mediante la acción de los rayos ultravioleta durante el proceso de la fotosíntesis: el gas carbónico y el oxígeno tomados de la atmósfera y el agua, el amoníaco, los nitratos, los nitritos y fosfatos absorbidos del suelo se transforman en azúcares, alcoholes, ácidos, ésteres, grasas, aminoácidos, proteínas, etc., que luego por reacciones de combinación, hidrólisis y polimerización entre otras, dan lugar a estructuras más complicadas y variadas
*La totalidad de estos compuestos están formados por enlace covalentes
*La mayoría presentan isómeros (sustancias que poseen la misma fórmula molecular pero difieren en sus propiedades físicas y químicas)
Los encontrados en la naturaleza, tienen origen vegetal o animal, muy pocos son de origen mineral
*Forman cadenas o uniones del carbono consigo mismo y otros elementos
El número de estos compuestos es muy grande comparado con el de los compuestos inorgánicos.

Compuestos inorgánicos
*Participan a la gran mayoría de los elementos conocidos.
*En su origen se forman ordinariamente por la acción de las fuerzas fisicoquímicas: fusión, sublimación, difusión, electrolisis y reacciones químicas a diversas temperaturas. La energía solar, el oxígeno, el agua y el silicio han sido los principales agentes en la formación de estas sustancias.
*Estos compuestos están formados por enlaces iónicos y covalentes.
*Generalmente no presentan isómeros.
*Un buen número son encontrados en la naturaleza en forma de sales, óxidos, etc.
*Con excepción de algunos silicatos no forman cadenas.
*El número de estos compuestos es menor comparado con el de los compuestos orgánicos.

viernes, 16 de enero de 2009

la materi, propiedades y cambios

Cuando lees o escuchas acerca de la "quimica" y no conoces lo que implica esta ciencia o disciplina de estudio, probablemente pienses en mezcla, combinaciones y experimentos; pero es mucho más. Los seres humanos estamos compuestos por elementos químicos básicos como el Carbono (C), el Hidrógeno (H), el Oxígeno (O), el Nitrógeno (N) y en pocas cantidades el Calcio (Ca), Fósforo (P), Azufre , (S), Potasio (K), Sodio (Na), y Magnesio (Mg), además estamos en contacto con muchos sucesos que tienen relación con la Química, por ejemplo cuando comemos, cada uno de nuestros alimentos contienen sustancias y nutrientes que al combinarse nos dan energía y nos hacen tener la fuerza suficiente para movernos y realizar todas nuestras actividades.
Esta energía conocida como metabólica, consiste en un conjunto de transformaciones que ocurren en nuestro organismo durante la nutrición .
Podemos darnos cuenta que en nuestro hogar estamos rodeados por la Química. Cuando cocinamos empleamos todo un laboratorio en el que se combinan y emplean muchas sustancias químicas, así como aparatos que para su funcionamiento requieren energía como la eléctrica. Entre otras cosas utilizamos insecticidas, saborizantes, cloros, detergentes que están formados por estas sustancias químicas.
Cuando nos enfermamos también estamos en contacto con la Química a través de los medicamentos y para mantener nuestra salud las vacunas y sueros forman parte de ellos.
No olvides, que en la naturaleza la Química nos rodea.
Existen productos naturales como el aire que nos permiten funciones como la fotosíntesis.
El agua es otro producto natural que podemos utilizar en la industria como el agua potable que usamos en la alimentación y en las labores domésticas.
El agua destilada es pura, es decir, no tiene sales minerales.
Las aguas minerales contienen gran cantidad de sales.
El petróleo es otro producto natural, así como los minerales y los empleamos en la construcción, en la industria y hasta en la joyería, los metales como el aluminio y el hierro se emplean en la industria automotriz.
Los plásticos y fibras artificiales son materiales sintéticos que nos sirven en nuestra vida diaria.
Hay fuentes energéticas como la electricidad que obtenemos para la transformación de diferentes energías: la hidráulica, química nuclear, solar, mecánica, eólica, etc.
Así podemos darnos cuenta que en nuestra vida diaria estamos en contacto directo con la Química y resulta muy interesante adentrarse en esta materia para describir muchas otras cosas.
El hombre está en constante relación con la Química.
Date cuenta que la Química está más cerca de lo que podrías imaginarte, a través de ella podremos hacer y descubrir cosas muy interesantes.
Las Propiedades y Cambios Físicos y Químicos de la Materia: La materia es todo lo que tiene masa y ocupa un volumen. Son materia la pizarra, un libro, un bolígrafo, etc. y no son materia la bondad, belleza, color, etc.
Hay determinadas magnitudes físicas que no permiten diferenciar unas sustancias de otras y por ello se les llama PROPIEDADES GENERALES de la materia. Es el caso de la masa y el volumen.
Para distinguir unas sustancias de otras hay que recurrir a las PROPIEDADES ESPECÍFICAS, que sí son propias de cada sustancia. Entre ellas podemos citar la densidad, dureza, punto de fusión, etc. Insistir en que para poder identificar una sustancia, en la mayoría de los casos hay que recurrir al estudio de más de una propiedad específica
Características de la Materia
• Presentes en todas las sustancias.
• No dependen de la cantidad desustancia.
• Nos permiten identificar o caracterizar una sustancia y distinguirla de otras.
• Se subdividen en dos categorías:
– Propiedades Físicas
– Propiedades Químicas
• Físicas: aquellas que identifican a las sustancias sin alterar su composición.
• Químicas: aquellas que relacionan los cambios de composición de una sustancia o sus reacciones con otras sustancias.
Propiedades Físicas
• Color
• Olor
• Sabor
• Densidad
• Lubricidad
• Punto de Fusión
• Punto de Ebullición
• Disolución en agua
• Calor Específico
• Maleabilidad
• Viscosidad
• Dureza
• Brillo
• Ductilidad
• Brillo
• Conductividad
• Volatilidad
Propiedades Químicas
Las preguntas siguientes conciernen a éstas propiedades:
• ¿Se quema o arde con el aire?
• ¿Se descompone con el calor?
• ¿Reacciona con otras sustancias? como: Agua, ácidos, metales, no metales, etc.…
• ¿Hace explosión?
• ¿Es tóxico?
• ¿Al reaccionar con otras sustancias se Forman sustancias nuevas?
Propiedades Extensivas de la Materia
Dependen de la cantidad de sustancia o muestra que se mide
* Masa
–Medida de la cantidad de materia presente en un objeto.
* Peso
– Efecto de la acción de la fuerza de gravedad sobre la masa de un objeto en particular.
Propiedades Extensivas de la Materia
* Volumen
–Medida de la cantidad de espacio que ocupa un objeto.
* Longitud
–Medida de la distancia entre dos puntos de un objeto o un lugar determinado.
• Físicos: aquellos que no cambian la naturaleza interna de las sustancias o materia.
– Fusión de un metal, cortar una vela, ebullición del agua.
• Químicos: aquellos que si cambian la naturaleza interna de las sustancias, a partir de reacciones químicas.
– Combustión de la gasolina produce bióxido de carbono, agua y energía.
– Corrosión del hierro o fierro.
Tipos de Cambios de la Materia Identificación de Cambios Físicos o Químicos
1. Digestión de proteínas C. Químico
2. Pulverización de un gis C. Físico
3. Evaporación del agua C. Físico
4. Fotosíntesis C. Químico
5. Granizo C. Físico
6. Putrefacción de la carne C. Químico
7. Respiración de las plantas C. Químico
8. Fusión del queso C. Físico
Átomo
En química y física, átomo (del latín atomus, y éste del griego άτομος, indivisible) es la unidad más pequeña de un elemento químico que mantiene su identidad o sus propiedades y que no es posible dividir mediante procesos químicos.
El átomo como bloque básico e indivisible que compone la materia del universo ya fue postulado por la escuela atomista en la Antigua Grecia. Sin embargo, su existencia no quedó demostrada hasta el siglo XIX. Con el desarrollo de la física nuclear en el siglo XX se comprobó que el átomo puede subdividirse en partículas más pequeñas.
Estructura atómica
La teoría aceptada hoy es que el átomo se compone de un núcleo de carga positiva formado por protones y neutrones, en conjunto conocidos como nucleón, alrededor del cual se encuentra una nube de electrones de carga negativa.
El núcleo atómico
El núcleo del átomo se encuentra formado por nucleones, los cuales pueden ser de dos clases:
Protones: Partícula de carga eléctrica positiva igual a una carga elemental, y 1,67262 × 10–27 kg y una masa 1837 veces mayor que la del electrón
Neutrones: Partículas carentes de carga eléctrica y una masa un poco mayor que la del protón (1,67493 × 10–27 kg)
El núcleo más sencillo es el del hidrógeno, formado únicamente por un protón. El núcleo del siguiente elemento en la tabla periódica, el helio, se encuentra formado por dos protones y dos neutrones. La cantidad de protones contenidas en el núcleo del átomo se conoce como número atómico, el cual se representa por la letra Z y se escribe en la parte inferior izquierda del símbolo químico. Es el que distingue a un elemento químico de otro. Según lo descrito anteriormente, el número atómico del hidrógeno es 1 (1H), y el del helio, 2 (2He).
La cantidad total de nucleones que contiene un átomo se conoce como número másico, representado por la letra A y escrito en la parte superior izquierda del símbolo químico. Para los ejemplos dados anteriormente, el número másico del hidrógeno es 1(1H), y el del helio, 4(4He).
Existen también átomos que tienen el mismo número atómico, pero diferente número másico, los cuales se conocen como isótopos. Por ejemplo, existen tres isótopos naturales del hidrógeno, el protio (1H), el deuterio (2H) y el tritio (3H). Todos poseen las mismas propiedades químicas del hidrógeno, y pueden ser diferenciados únicamente por ciertas propiedades físicas.
Otros términos menos utilizados relacionados con la estructura nuclear son los isótonos, que son átomos con el mismo número de neutrones. Los isóbaros son átomos que tienen el mismo número másico.
Debido a que los protones tienen cargas positivas se deberían repeler entre sí, sin embargo, el núcleo del átomo mantiene su cohesión debido a la existencia de otra fuerza de mayor magnitud, aunque de menor alcance conocida como la interacción nuclear fuerte.

·
Modelos AtómicosDesde la Antigüedad, el ser humano se ha cuestionado de qué estaba hecha la materia.Unos 400 años antes de Cristo, el filósofo griego Demócrito consideró que la materia estaba constituida por pequeñísimas partículas que no podían ser divididas en otras más pequeñas. Por ello, llamó a estas partículas átomos, que en griego quiere decir "indivisible". Demócrito atribuyó a los átomos las cualidades de ser eternos, inmutables e indivisibles.Sin embargo las ideas de Demócrito sobre la materia no fueron aceptadas por los filósofos de su época y hubieron de transcurrir cerca de 2200 años para que la idea de los átomos fuera tomada de nuevo en consideración


·
Modelo de Dalton
Fue el primer modelo atómico con bases científicas, fue formulado en 1808 por John Dalton. Este primer modelo atómico postulaba:
La materia está formada por partículas muy pequeñas llamadas átomos, que son indivisibles y no se pueden destruir.
Los átomos de un mismo elemento son iguales entre sí, tienen su propio peso y cualidades propias. Los átomos de los diferentes elementos tienen pesos diferentes.
Los átomos permanecen sin división, aún cuando se combinen en las reacciones químicas.
Los átomos, al combinarse para formar compuestos guardan relaciones simples.
Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto.
Los compuestos químicos se forman al unirse átomos de dos o más elementos distintos.
Sin embargo desapareció ante el modelo de Thomson ya que no explica los rayos catódicos, la radioactividad ni la presencia de los electrones (e-) o protones (p+).
Modelo de Thomson
Luego del descubrimiento del electrón en 1897 por Joseph John Thomson, se determinó que la materia se componía de dos partes, una negativa y una positiva. La parte negativa estaba constituida por electrones, los cuales se encontraban según este modelo inmersos en una masa de carga positiva a manera de pasas en un pastel (de la analogía del inglés plum-pudding model).
Para explicar la formación de iones, positivos y negativos, y la presencia de los electrones dentro de la estructura atómica, Thomson ideó un átomo parecido a un pastel de frutas. Una nube positiva que contenía las pequeñas partículas negativas (los electrones) suspendidos en ella. El número de cargas negativas era el adecuado para neutralizar la carga positiva. En el caso de que el átomo perdiera un electrón, la estructura quedaría positiva; y si ganaba, la carga final sería negativa. De esta forma, explicaba la formación de iones; pero dejó sin explicación la existencia de las otras radiaciones.
Modelo de Rutherford
Este modelo fue desarrollado por el físico Ernest Rutherford a partir de los resultados obtenidos en lo que hoy se conoce como el experimento de Rutherford en 1911. Representa un avance sobre el modelo de Thomson, ya que mantiene que el átomo se compone de una parte positiva y una negativa, sin embargo, a diferencia del anterior, postula que la parte positiva se concentra en un núcleo, el cual también contiene virtualmente toda la masa del átomo, mientras que los electrones se ubican en una corteza orbitando al núcleo en órbitas circulares o elípticas con un espacio vacío entre ellos. A pesar de ser un modelo obsoleto, es la percepción más común del átomo del público no científico. Rutherford predijo la existencia del neutrón en el año 1920, por esa razón en el modelo anterior (Thomson), no se habla de éste.
Por desgracia, el modelo atómico de Rutherford presentaba varias incongruencias:
Contradecía las leyes del electromagnetismo de James Clerk Maxwell, las cuales estaban muy comprobadas mediante datos experimentales. Según las leyes de Maxwell, una carga eléctrica en movimiento (en este caso el electrón) debería emitir energía constantemente en forma de radiación y llegaría un momento en que el electrón caería sobre el núcleo y la materia se destruiría. Todo ocurriría muy brevemente.
· No explicaba los espectros atómicos
Modelo de Bohr
Este modelo es estrictamente un modelo del átomo de hidrógeno tomando como punto de partida el modelo de Rutherford, Niels Bohr trata de incorporar los fenómenos de absorción y emisión de los gases, así como la nueva teoría de la cuantización de la energía desarrollada por Max Planck y el fenómeno del efecto fotoeléctrico observado por Albert Einstein.
“El átomo es un pequeño sistema solar con un núcleo en el centro y electrones moviéndose alrededor del núcleo en orbitas bien definidas.” Las orbitas están cuantizadas (los e- pueden estar solo en ciertas orbitas)
Cada orbita tiene una energía asociada. La más externa es la de mayor energía.
Los electrones no radian energía (luz) mientras permanezcan en orbitas estables.
Los electrones pueden saltar de una a otra orbita. Si lo hace desde una de menor energía a una de mayor energía absorbe un cuanto de energía (una cantidad) igual a la diferencia de energía asociada a cada orbita. Si pasa de una de mayor a una de menor, pierde energía en forma de radiación (luz).
El mayor éxito de Bohr fue dar la explicación al espectro de emisión del hidrogeno. Pero solo la luz de este elemento. Proporciona una base para el carácter cuántico de la luz, el fotón es emitido cuando un electrón cae de una orbita a otra, siendo un pulso de energía radiada. Bohr no puede explicar la existencia de orbitas estables y para la condición de cuantización. Bohr encontró que el momento angular del electrón es h/2π por un método que no puede justificar.
Modelo de Schrödinger: modelo actual
Después de que Louis-Víctor de Broglie propuso la naturaleza ondulatoria de la materia en 1924, la cual fue generalizada por Erwin Schrödinger en 1926, se actualizó nuevamente el modelo del átomo.
En el modelo de Schrödinger se abandona la concepción de los electrones como esferas diminutas con carga que giran en torno al núcleo, que es una extrapolación de la experiencia a nivel macroscópico hacia las diminutas dimensiones del átomo. En vez de esto, Schrödinger describe a los electrones por medio de una función de onda, el cuadrado de la cual representa la probabilidad de presencia en una región delimitada del espacio. Esta zona de probabilidad se conoce como orbital. La gráfica siguiente muestra los orbitales para los primeros niveles de energía disponibles en el átomo de hidrógeno y oxígeno.
La tabla periódica
Desde comienzos del siglo XIX, los científicos han agrupado los elementos químicos en tablas, ordenadas en función de sus propiedades. Fruto de estos trabajos es la tabla periódica, tal como la conocemos y utilizamos hoy. La tabla consta de 18 columnas, donde los elementos ocupan sus lugares atendiendo al orden creciente del número atómico Z. Los metales están separados de los no metales, los gases nobles ocupan el final de cada periodo y las tierras raras (lantánidos y actínidos) están fuera de la tabla en dos filas de 14 elementos cada una.
Estructura de la tabla periódica
La tabla periódica consta de 7 filas horizontales o periodos, numerados del 1 al 7, y de 18 columnas verticales o grupos, numerados del 1 al 18.
Además de esta ordenación, es frecuente referirse a cuatro bloques denominados S, P, D y F, según sea el orbital ocupado por la capa de valencia.
El bloque S está formado por los elementos de los grupos 1 y 2. Los elementos del grupo 1, los metales alcalinos, tienen configuración electrónica ns1. Los metales alcalinotérreos, situados en el grupo 2, tienen configuración ns2.
El bloque P lo forman los grupos del 13 al 18, cuyos electrones de valencia ocupan los orbitales p. A partir del grupo 13, con configuración externa ns2np1, comienza el grupo p. Los elementos del grupo 17, halógenos, tienen configuración electrónica ns2np5. Los elementos del grupo 18, gases nobles, tienen la capa de valencia completa, siendo su configuración electrónica ns2np6.
Los elementos del bloque D, denominados elementos de transición, están en el centro de la tabla, ocupando los grupos del 3 al 12. Los electrones externos ocupan los orbitales d correspondientes al nivel n–1. Las configuraciones varían desde (n–1)d1ns2 en el grupo 3, hasta (n–1)d10ns2 en el grupo 12.
El bloque F comprende los elementos de transición interna. Están formados por dos series de 14 elementos cada una, ocupando los electrones orbitales f del nivel (n-2). La configuración electrónica, con algunas excepciones, puede escribirse de forma general como (n–2)f1–14(n–1)d1ns2, tomando n un valor de 6 para los lantánidos y 7 para los actínidos. Algunas propiedades físicas de los elementos varían regularmente en función de su configuración electrónica, esto es, de su posición en la tabla periódica. Por eso se denominan



Tabla periódica de los elementos.
· Energía de ionización
Se denomina energía de ionización (EI) a la energía necesaria para separar un electrón de un átomo gaseoso y formar un ion:
Variación de la energía de ionización en la tabla periódica.
· Afinidad electrónica
La afinidad electrónica (AE) de un elemento es la energía interna intercambiada cuando un átomo neutro, gaseoso y en estado fundamental, capta un electrón y se convierte en un ion mononegativo:
Variación del valor absoluto de la afinidad electrónica en la tabla periódica.
· Electronegatividad
Se define la electronegatividad (EN) de un elemento como la capacidad relativa de un átomo de ese elemento para atraer electrones hacia sí, cuando forma parte de un enlace químico.
Variación de la electronegatividad en la tabla periódica.
· Carácter metálico
El carácter metálico (c.m.) aumenta hacia la izquierda en un periodo y hacia abajo en los grupos de los elementos representativos.
Variación del carácter metálico en la tabla periódica.
La importancia de la tabla periódica radica en el hecho de que mediante el conocimiento de las propiedades y las tendencias generales dentro de un grupo o periodo, se predicen las propiedades de cualquier elemento. De acuerdo con el tipo de subnivel que ha llenado en la tabla periódica, los elementos se dividen en varias categorías: los elementos representativos, los gases nobles, los elementos de transición, los lantánidos y los actínidos. Los elementos representativos son los que pertenecen a los grupos del 1A al 7A, estos se caracterizan por tener incompletos los subniveles s o p de su máximo número cuántico principal. Con excepción del Helio, los gases nobles tienen completamente lleno el subnivel P. Los metales de transición son los elementos de los grupos 1B y 3B hasta 8B, estos tienen incompleto el subnivel d (por esto se les conoce como elementos del bloque d). Estos elementos no tienen una numeración secuencial en la tabla periódica ya que su configuración electrónica no corresponde con la de los elementos representativos. Los lantánidos y los actínidos algunas veces se denominan elementos de transición del bloque f porque tienen incompleto el subnivel f. Todos los miembros del grupo 1A, los metales alcalinos, tienen configuraciones electrónicas semejantes; todos tienen un núcleo de gas noble y un electrón externo ns1, de la misma forma, los metales alcalinotérreos del grupo 2A, tienen un núcleo de gas noble y una configuración electrónica ns2. Los electrones externos de un átomo, que son los implicados en un enlace químico reciben el nombre de electrones de valencia. El grupo de gases nobles se caracteriza porque a excepción del Criptón y el Xenón, el resto de estos elementos son totalmente inertes respecto al punto de vista químico, ya que estos elementos tienen llenos por completo los subniveles ns y np, lo que les da más estabilidad. Cuando se comparan los elementos del grupo 1A con los elementos del grupo 1B, se puede notar que sus configuraciones electrónicas son semejantes, con un electrón en el orbital s externo, pero sus propiedades químicas son muy diferentes. Los valores de la energía de ionización de los metales del grupo 1B son considerablemente mayores que aquellos de los metales alcalinos, por lo tanto los elementos del grupo 1B son mucho menos reactivos. Los altos valores de la energía de ionización de los elementos del grupo 1B se deben al apantallamiento incompleto del núcleo por los electrones d internos (en comparación con el apantallamiento más eficaz de los núcleos completos de los gases nobles). Como consecuencia, los electrones s externos de estos elementos son atraídos con más fuerza por el núcleo. La diferencia en las propiedades químicas entre los elementos del grupo 2A (alcalinotérreos) y los metales del grupo 2B se explica de la misma forma. Los números cuánticos que describen la cantidad de electrones en un átomo, están relacionados a las energías de los electrones. El estado más estable de un átomo se llama estado fundamental. En esta condición los electrones tienen la menor energía posible. Si se conoce el número de electrones en un átomo se puede describir la configuración electrónica de su estado fundamental, ya que los electrones entran en los varios orbitales en un orden definido, iniciando con el de menor energía. Un ejemplo puede ser el hidrogeno, que tiene un solo electrón, el cual se mueve en el subnivel 1s del primer nivel de energía, en el Helio, sus dos electrones ocupan el nivel de energía 1s. La notación de la configuración electrónica del hidrogeno 1s1, indica que tiene un electrón (representado por el exponente) en el subnivel s del primer nivel de energía, así se denotan las configuraciones electrónicas de los diferentes elementos, teniendo en cuenta su número atómico y los esquemas de energía potencial para los orbitales en átomos con muchos electrones, lo que en otras palabras significa la cantidad máxima de electrones que puede haber en un nivel de energía. Para la lectura de una tabla periódica se deben tener en cuenta varias cosas, como el hecho de que los átomos se ordenan en un número creciente según su número atómico, ese número indica el número de protones que hay en el átomo, este número es igual al de electrones que giran alrededor del átomo. Los pesos atómicos se determinan por comparación con el del átomo de carbono que se considera de 12. La tabla además trae otra información, que representa como se dan las propiedades periódicas en un elemento específico, como el radio iónico, el radio atómico, la energía de ionización, su número de oxidación y otros. La energía de ionización de un elemento es la energía mínima necesaria para quitar un electrón de un átomo en estado gaseoso, en su estado fundamental. El átomo al perder un electrón es un Ion gaseoso monopositivo. Esta definición corresponde a la primera energía de ionización, ya que también existe la segunda energía de ionización, que es la que se necesita para extraer de un Ion gaseoso monopositivo el electrón menos fuertemente unido. Las sucesivas energías de ionización se definen de manera semejante. La magnitud de la energía de ionización es la medida de que tan fuertemente se encuentra el electrón unido al átomo, entre más grande es esta magnitud, más difícil es quitar el electrón. Dentro de cada periodo, los elementos del grupo 1A tienen la mínima energía de ionización, y los gases nobles la máxima. Dentro de cada grupo, la energía de ionización disminuye al descender en el grupo. La afinidad electrónica es la cantidad de energía que se libera cuando un átomo de un elemento en estado gaseoso en su estado fundamental capta un electrón y se transforma en un Ion negativo también gaseoso. La adición de un electrón a la capa de valencia de un átomo gaseoso en su estado fundamental es un proceso en el que se desprende energía. La afinidad electrónica de un átomo es una medida de esta energía. La afinidad electrónica disminuye al aumentar el radio atómico. La electronegatividad es la capacidad de un átomo de un elemento de atraer hacia sí los electrones de un enlace químico. Los valores de la electronegatividad de los elementos representativos aumentan de izquierda a derecha en la tabla periódica, a medida que aumenta el número de electrones de valencia y disminuye el tamaño de los átomos. Dentro de un grupo, la electronegatividad disminuye al aumentar el número y el radio atómicos. El radio atómico es la mitad de la distancia entre dos núcleos de dos átomos metálicos adyacentes. Dentro de un grupo, el radio atómico aumenta ala aumentar el número atómico. Dentro de un periodo, el radio atómico disminuye de derecha a izquierda.
El radio iónico es el radio de un catión o un anión. Los radios iónicos de los cationes son más pequeños que los radios covalentes de los átomos que corresponden al enlace, ya que hay menos electrones que sujetar mediante la misma carga de energía nuclear que en los átomos neutros. Al contrario, los aniones tienen radios mayores que los átomos que corresponden a su enlace. Dentro de un grupo, los radios iónicos aumentan al aumentar el número atómico, dentro de un periodo, el radio iónico disminuye al aumentar el número atómico. El número de oxidación es la carga eléctrica formal que se asigna a un átomo en un compuesto. El número de oxidación supone que hay enlaces iónicos entre átomos unidos por enlace covalente. Su variación en una reacción química indica la existencia de un proceso de oxidación-reducción. El número de oxidación se puede definir como el número de cargas que habría que asignar a cada uno de los átomos de los distintos elementos que forman un compuesto, si todos ellos pasaran al estado de iones. La suma de los números de oxidación de todos los átomos que forman un compuesto es cero. Los electrones de valencia para los elementos representativos, son aquellos que están en el nivel n de energía principal más alto.
Grupos
A las columnas verticales de la Tabla Periódica se les conoce como grupos. Todos los elementos que pertenecen a un grupo tienen la misma valencia, y por ello, tienen características o propiedades similares entre si. Por ejemplo los elementos en el grupo IA tienen valencia de 1 (un electrón en su último nivel de energía) y todos tienden a perder ese electrón al enlazarse como iones positivos de +1. Los elementos en el último grupo de la derecha son los Gases Nobles, los cuales tienen su último nivel de energía lleno (regla del octeto) y por ello son todos extremadamente no-reactivos.
Los grupos de la Tabla Periódica, numerados de izquierda a derecha son:
Grupo 1 (IA): los metales alcalinos
Grupo 2 (IIA): los metales alcalinotérreos
Grupo 3 al Grupo 12: los metales de transición , metales nobles y metales mansos
Grupo 13 (IIIA): Térreos
Grupo 14 (IVA): carbonoideos
Grupo 15 (VA): nitrogenoideos
Grupo 16 (VIA): los calcógenos o anfígenos
Grupo 17 (VIIA): los halógenos
Grupo 18 (VIIIA): los gases nobles
Períodos
Las filas horizontales de la Tabla Periódica son llamadas Períodos. Contrario a como ocurre en el caso de los grupos de la tabla periódica, los elementos que componen una misma fila tienen propiedades diferentes pero masas similares: todos los elementos de un período tienen el mismo número de orbitales. Siguiendo esa norma, cada elemento se coloca de acuerdo a su configuración electrónica. El primer período solo tiene dos miembros: hidrógeno y helio, ambos tienen solo el orbital 1s.
La tabla periódica consta de 7 períodos:
Período 1
Período 2
Período 3
Período 4
Período 5
Período 6
Período 7
La tabla también está dividida en cuatro grupos, s, p, d, f, que están ubicados en el orden sdp, de izquierda a derecha, y f lantanidos y actínidos, esto depende de la letra en terminación de los elementos de este grupo según el principio de Aufban.
Química orgánica El término “química orgánica" fue introducido en 1807 por Jöns Jacob Berzelius, para estudiar los compuestos derivados de recursos naturales. Se creía que los compuestos relacionados con la vida poseían una “fuerza vital” que les hacía distintos a los compuestos inorgánicos, además se consideraba imposible la preparación en el laboratorio de un compuesto orgánico, lo cual se había logrado con compuestos inorgánicos.
La química orgánica es importantes en los seres vivos estamos formados por moléculas orgánicas, proteínas, ácidos nucleicos, azúcares y grasas. Todos ellos son compuestos cuya base principal es el carbono. Los productos orgánicos están presentes en todos los aspectos de nuestra vida: la ropa que vestimos, los jabones, champús, desodorantes, medicinas, perfumes, utensilios de cocina, la comida, etc.
La química inorgánica se encarga del estudio integrado de la formación, composición, estructura y reacciones de los elementos y compuestos inorgánicos; es decir, los que no poseen enlaces carbono-hidrógeno, porque éstos pertenecen al campo de la química orgánica. Dicha separación no es siempre clara, como por ejemplo en la química organometálica que es una superposición de ambas.
Antiguamente se definía como la química de la materia inorgánica, pero quedó obsoleta al desecharse la hipótesis de la fuerza vital, característica que se suponía propia de la materia viva que no podía ser creada y permitía la creación de las orgánicas. Se suele clasificar los compuestos inorgánicos según su función en ácidos, bases, óxidos y sales, y los óxidos se les suele dividir en óxidos metálicos (óxidos básicos o anhídridos básicos) y óxidos no metálicos (óxidos ácidos o anhídridos ácidos), esto es a lo que creo se refiere tu maestro.
El término función se les da por que los miembros de cada grupo actúan de manera semejante.
El término anhídrido básico se refiere a que cuando un óxido metálico reacciona con agua generalmente forma una base, mientras que los anhídridos ácidos generalmente reaccionan con agua formando un ácido.
Al ver una fórmula generalmente lo podemos ubicar en uno de estos grupos.
1. Ácidos cuando observamos el símbolo del hidrógeno al extremo izquierdo de la fórmula
2. Bases cuando observamos un metal al principio de la fórmula unido al anión hidróxido (OH-) al final.
3. Óxidos a los compuestos BINARIOS del oxigeno, (ojo, debe ser binario contener sólo dos elementos en la fórmula, uno de ellos es el oxígeno que va escrito su símbolo al extremo derecho. Óxido metálico cuando es un metal el que se enlaza al oxígeno. Óxido no metálico cuando es un no-metal el enlazado al oxígeno
4. Sales son aquellas que están formadas por un metal y un anión que no es ni óxido ni hidróxido.
Como excepción tenemos que el ion amonio (NH4*+) puede hacer la función de un metal en las sales y en el hidróxido de amonio, este último sólo existe en solución acuosa


Compuesto químico
Agua, el compuesto químico más común en la naturaleza.
En química, un compuesto es una sustancia formada por la unión de 2 o más elementos de la tabla periódica, en una razón fija. Una característica esencial es que tiene una fórmula química. Por ejemplo, el agua es un compuesto formado por hidrógeno y oxígeno en la razón de 2 a 1 (en número de átomos).
En general, esta razón fija es debida a una propiedad intrínseca. Un compuesto está formado por moléculas o iones con enlaces estables y no obedece a una selección humana arbitraria. Por este motivo el bronce o el chocolate son denominadas mezclas o aleaciones pero no compuestos.
Los elementos de un compuesto no se pueden dividir o separar por procesos físicos (decantación, filtración, destilación, etcétera), sino sólo mediante procesos químicos.
Naturaleza de los compuestos químicos
Los átomos en la molécula no pueden permanecer unidos sin enlaces. Existen dos tipos de enlaces: el uno el covalente entre átomos, un ejemplo es el agua que esta unido mediante un enlace covalente polar; y el enlace iónico es entre iones, como por ejemplo el cloruro de sodio.
Hay algunas excepciones representado por H2, es homonuclear, esto es, tiene átomos de un solo elemento.
Comparación entre mezclas y compuestos
Los compuestos tienen diferentes propiedades físicas y químicas que las de sus elementos constituyentes. Éste es uno de los criterios principales para distinguir un compuesto de una mezcla de sustancias. Las propiedades de las mezclas son generalmente similares a las propiedades de sus constituyentes, o están relacionadas. Una mezcla tiene una composición variable, un compuesto tiene una composición fija. Una mezcla es una unión física de sustancias, un compuesto es.
Fórmula
Los químicos describen los compuestos usando los símbolos químicos de los átomos enlazados. El orden de éstos en los compuestos inorgánicos va desde el más electronegativo a la derecha. Por ejemplo en el NaCl, el cloro que es más electronegativo que el sodio va en la parte derecha. Para los compuestos orgánicos existen otras varias reglas.
Clasificación
Los principales compuestos químicos que existen en la actualidad son:
Óxidos básicos, que están formados por un metal y oxígeno. Por ejemplo, el óxido plúmbico.
Óxidos ácidos, formados por un no metal y oxígeno. Por ejemplo, óxido hipocloroso.
Hidruros, que pueden ser tanto metálicos como no metálicos. Están compuestos por un elemento e hidrógeno. Por ejemplo, hidruro de aluminio.
Hidrácidos, son hidruros no metálicos que, cuando se disuelven en agua, adquieren carácter ácido. Por ejemplo, el ácido iodhídrico.
Hidróxidos, compuestos formados por la reacción entre un óxido básico y el agua, que se caracterizan por presentar el grupo oxidrilo (OH). Por ejemplo, el hidróxido de sodio, o sosa cáustica.
Oxoácidos, compuestos obtenidos por la reacción de un óxido ácido y agua. Sus moléculas están formadas por hidrógeno, un no metal y oxígeno. Por ejemplo, ácido clórico.
Sales binarias, compuestos formados por un hidrácido más un hidróxido. Por ejemplo, el cloruro de sodio.
Oxisales, formadas por la reacción de un oxoácido y un hidróxido, como por ejemplo el hipoclorito de sodio.
Propiedades de los elementos y compuestos químicos
Número atómico- Masa atómica – Electronegatividad de Pauling – Densidad - Punto de fusión – Punto de ebullición – Radio de Vanderwaals – Radio iónico – Isótopos – Corteza electrónica – Energía de la primera ionización – Energía de la segunda ionización – Potencial estándard

Número atómicoEl número atómico indica el número de protones en la corteza de un átomo. El número atómico es un concepto importante de la química y de la mecánica cuántica.El elemento y el lugar que éste ocupa en la tabla periódica derivan de este concepto. Cuando un átomo es generalmente eléctricamente neutro, el número atómico será igual al número de electrones del átomo que se pueden encontrar alrededor de la corteza. Estos electrones determinan principalmente el comportamiento químico de un átomo. Los átomos que tienen carga eléctrica se llaman iones. Los iones pueden tener un número de electrones más grande (cargados negativamente) o más pequeño (cargados positivamente) que el número atómico.
Masa atómicaEl nombre indica la masa atómica de un átomo, expresada en unidades de masa atómica. Cada isótopo de un elemento químico puede variar en masa. La masa atómica de un isótopo indica el número de neutrones que están presentes en la corteza de los átomos. La masa atómica indica el número partículas en la corteza de un átomo; esto quiere decir los protones y los neutrones. La masa atómica total de un elemento es una media ponderada de las unidades de masa de sus isótopos. La abundancia relativa de los isótopos en la naturaleza es un factor importante en la determinación de la masa atómica total de un elemento.
Electronegatividad de PaulingLa electronegatividad mide la tendencia de un átomo para atraer la nube electrónica hacia sí durante el enlace con otro átomo.La escala de Pauling es un método ampliamente usado para ordenar los elementos químicos de acuerdo con su electro negatividad. El premio Nobel Linus Pauling desarrolló esta escala en 1932.Los valores de electronegatividad no están calculados, ni basados en formulas matemáticas ni medidas. Es más que nada un rango pragmático.Pauling le dio un valor de 4,0 al elemento con la electronegatividad más alta posible, el flúor. Al francio, el elemento con la electronegatividad más baja posible, se le dio un valor de 0,7. A todos los elementos restantes se les dio un valor entre estos dos extremos.
DensidadLa densidad de un elemento indica el número de unidades de masa del alemento que están presentes en cierto volumen de un medio. Tradicionalmente la densidad se expresa a través de la letra griega “ro” (escrita r). Dentro del sistema internacional de unidades (SI) la densidad se expresa en kilogramos por metro cúbico (kg/m3). La densidad de un elemento se expresa normalmente de forma gráfica con temperaturas y presiones del aire, porque ambas propiedades influyen en la densidad.
Punto de fusión
El punto de fusión de un elemento o compuesto es la temperatura a la cual la forma sólida del elemento o compuesto se encuentra en equilibrio con la forma líquida. Normalmente se asume que la presión del aire es de 1 atmósfera.Por ejemplo: el punto de fusión del agua es de 0oC, o 273 K.
Punto de ebullición El punto de ebullición de un elemento o compuesto significa la temperatura a la cualla forma líquida de un elemento o compuesto se encuentra en equilibrio con la forma gaseosa. Normalmente se asume que la presión del aire es de 1 atmósfera.Por ejemplo: el punto de ebullición del agua es de 100oC, o 373 K.En el punto de ebullición la presión de un elemento o compuesto es de 1 atmósfera.
Radio de VanderwaalsIncluso si dos átomos cercanos no se unen, se atraerán entre sí. Este fenómeno es conocido como fuerza de Vanderwaals.Las fuerzas de Vanderwaals provocan una fuerza entre los dos átomos. Esta fuerza es más grande cuanto más cerca estén los átomos el uno del otro. Sin embargo, cuando los dos átomos se acercan demasiado actuará una fuerza de repulsión, como consecuencia de la repulsión entre las cargas negativas de los electrones de ambos átomos. Como resultado, se mantendrá una cierta distancia entre los dos átomos, que se conoce normalmente como el radio de Vanderwaals.A través de la comparación de los radios de Vanderwaals de diferentes pares de átomos, se ha desarrollado un sistema de radios de Vanderwaals, a través del cual podemos predecir el radio de Vanderwaals entre dos átomos, mediante una simple suma.
Radio iónicoEs el radio que tiene un ión en un cristal iónico, donde los iones están empaquetados juntos hasta el punto que sus orbitales atómicos más externos están en contacto unos con otros. Un orbital es el área alrededor de un átomo donde, de acuerdo con la probabilidad de encontrar un electrón es máxima.
IsótoposEl número atómico no determina el número de neutrones en una corteza atómica. Como resultado, el número de neutrones en un átomo puede variar. Como resultado, los átomos que tienen el mismo número atómico pueden diferir en su masa atómica. Átomos del mismo elemento que difieren en su masa atómica se llaman isótopos (isotopos). Principalmente con los átomos más pesados que tienen un mayor número, el número de neutrones en la corteza puede sobrepasar al número de protones.Isótopos del mismo elemento se encuentran a menudo en la naturaleza alternativamente o mezclados.Un ejemplo: el cloro tiene un número atómico de 17, lo que básicamente significa que todos los átomos de cloro contienen 17 protones en su corteza. Existen dos isótopos. Tres cuartas partes de los átomos de cloro que se encuentran en la naturaleza contienen 18 neutrones y un cuarto contienen 20 neutrones. Los números atómicos de estos isótopos son: 17 + 18 = 35 y 17 + 20 = 37. Los isótopos se escriben como sigue: 35Cl y 37Cl.Cuando los isótopos se denotan de esta manera el número de protones y neutrones no tienen que ser mencionado por separado, porque el símbolo del cloro en la tabla periódica (Cl) está colocado en la posición número 17. Esto ya indica el número de protones, de forma que siempre se puede calcular el número de electrones fácilmente por medio del número másico.
Existe un gran número de isótopos que no son estables. Se desintegrarán por procesos de decaimiento radiactivo. Los isótopos que son radiactivos se llaman radioisótopos.
Corteza electrónicaLa configuración electrónica de un átomo es una descripción de la distribución de los electrones en círculos alrededor de la corteza. Estos círculos no son exactamente esféricos; tienen una forma sinuosa. Para cada círculo la probabilidad de que un electrón se encuentre en un determinado lugar se describe por una fórmula matemática. Cada uno de los círculos tiene un cierto nivel de energía, comparado con la corteza. Comúnmente los niveles de energía de los electrones son mayores cuando están más alejados de la corteza, pero debido a sus cargas, los electrones también pueden influir en los niveles de energía de los otros electrones. Normalmente los círculos del medio se llenan primero, pero puede haber excepciones debido a las repulsiones. Los círculos se dividen en capas y subcapas, que se pueden numerar por cantidades.
Energía de la primera ionizaciónLa energía de ionización es la energía que se requiere para hacer que un átomo libre o una molécula pierdan un electrón en el vacío. En otras palabras; la energía de ionización es una medida de la fuerza con la que un electrón se enlaza con otras moléculas. Esto involucra solamente a los electrones del círculo externo.
Energía de la segunda ionizaciónAparte de la energía de la primera ionización, que indica la dificultad de arrancar el primer electrón de un átomo, también existe la medida de energía par ala segunda ionización. Esta energía de la segunda ionización indica el grado de dificultad para arrancar el segundo átomo.También existe la energía de la tercera ionización, y a veces incluso la de la cuarta y quinta ionizaciones.
Potencial estándarEl potencial estándar es el potencial de una reacción redox, cuando está en equilibrio, con respecto al cero. Cuando el potencial estándar supera al cero, tenemos una reacción de oxidación. Cuando el potencial estándar supera al cero, tenemos una reacción de reducción. El potencial estándar de los electrones se expresa en voltios (V), mediante el símbolo V0.
La cinética molecular
A lo largo de la historia del pensamiento humano se ha elaborado un modelo a cerca de como está constituida la materia, se conoce con el nombre de MODELO CINÉTICA MOLECULAR.
Según éste modelo de materia, todo lo que vemos está formado por unas partículas muy pequeñas, que son invisibles aún a los mejores microscopios y que se llaman moléculas. Las moléculas están en continuo movimiento y entre ellas existen fuerza atractivas, llamadas fuerzas de cohesión. Las moléculas al estar en movimiento, se encuentran a una cierta distancia unas de otras. Entre las moléculas hay espacio vacío.
En el ESTADO SOLIDO las moléculas están muy juntas y se mueven oscilando alrededor de unas posiciones fijas; las fuerzas de cohesión son muy grandes. En el ESTADO LIQUIDO las moléculas están más separadas y se mueven de manera que pueden cambiar sus posiciones, pero las fuerzas de cohesión, aunque son manos intensas que en el estado sólido, impiden que las moléculas puedan independizarse. En el ESTADO GASEOSO las moléculas están totalmente separadas unas de otras y se mueven libremente; no existen fuerzas de cohesión.
Sí aumentamos la temperatura de un sistema material sólido, sus moléculas se moverán más rápidamente y aumentarán la distancia medía entre ellas, las fuerzas de cohesión disminuyen y llegará un momento en que éstas fuerzas son incapaces de mantener las moléculas en posiciones fijas, las moléculas pueden entonces desplazarse, el sistema material se ha convertido en líquido.
Si la temperatura del líquido continúa aumentando, las moléculas aumentarán aún más su rapidez, la distancia media entre ellas irá aumentando y las fuerzas de cohesión van disminuyendo hasta que finalmente las moléculas pueden liberarse unas de otras, ahora el SISTEMA MATERIAL 0 conjunto de moléculas está en estado gaseoso.
Si disminuimos la temperatura de un SISTEMA MATERIAL en estado gaseoso, disminuye la rapidez media de las moléculas y esto hace posible que al acercarse las moléculas casualmente, las fuerzas de cohesión, que siempre aumentan al disminuir la distancia, puedan mantenerlas unidas, el SISTEMA MATERIAL pasará al estado líquido.
Si disminuye aún más la temperatura, al moverse más lentamente las moléculas, la distancia media entre ellas sigue disminuyendo, las fuerzas de cohesión aumentarán más y llegará un momento que son lo suficientemente intensas como para impedir que las moléculas puedan desplazaras, obligándolas a ocupar posiciones fijas, el SISTEMA MATERIAL se ha convertido en un sólido.
Bioquímica en la vida diaria: el equilibrio químico y la función transportadora de la hemoglobina Carlos Mario Echeverría Palacio*, Raúl Ramírez
La hemoglobina es una proteína sanguínea que puede transportar oxígeno, un gas insoluble en medio acuoso, llevándolo a las diferentes partes del organismo en donde es requerido para su buen funcionamiento, así como productos metabólicos como el CO2 y el hidrógeno, para su excreción. Estos procesos se ven condicionados por factores como el pH, la concentración de BPG, las presiones parciales de O2 y CO2, la cooperatividad de la unión entre la hemoglobina y esos compuestos y los cambios conformacionales que la hemoglobina debe sufrir para captar y soltar eficientemente estas moléculas en el sitio del organismo donde son requeridos. Cambios abruptos en la presión atmosférica ligados a la altura, y la exposición a altas concentraciones de otros gases afines a la hemoglobina como el monóxido de carbono, presente en vehículos o recintos cerrados, pueden comprometer el funcionamiento normal del organismo precisamente porque causan efectos sobre esa función transportadora de la hemoglobina. En este escrito, se explicarán fenómenos de la vida diaria relacionados con el transporte de gases por la hemoglobina, como una demostración de que los conocimientos bioquímicos comienzan a ser útiles desde ahora para entender situaciones cotidianas y a dejarnos la expectativa de su valor para entender muchos de los problemas de salud que tendremos en nuestras manos.
Propiedades Físicas y Químicas del agua
Nombre común que se aplica al estado líquido del compuesto de hidrógeno y oxígeno H2O. Los antiguos filósofos consideraban el agua como un elemento básico que representaba a todas las sustancias líquidas. Los científicos no descartaron esta idea hasta la última mitad del siglo XVIII. En 1781 el químico británico Henry Cavendish sintetizó agua detonando una mezcla de hidrógeno y aire. Sin embargo, los resultados de este experimento no fueron interpretados claramente hasta dos años más tarde, cuando el químico francés Antoine Laurent de Lavoisier propuso que el agua no era un elemento sino un compuesto de oxígeno e hidrógeno. En un documento científico presentado en 1804, el químico francés Joseph Louis Gay-Lussac y el naturalista alemán Alexander von Humboldt demostraron conjuntamente que el agua consistía en dos volúmenes de hidrógeno y uno de oxígeno, tal como se expresa en la fórmula actual H2O.
2. Propiedades Físicas Del Agua
1) Estado físico: sólida, liquida y gaseosa2) Color: incolora3) Sabor: insípida4) Olor: inodoro5) Densidad: 1 g./c.c. a 4°C6) Punto de congelación: 0°C7) Punto de ebullición: 100°C8) Presión critica: 217,5 atm.9) Temperatura critica: 374°C
El agua químicamente pura es un liquido inodoro e insípido; incoloro y transparente en capas de poco espesor, toma color azul cuando se mira a través de espesores de seis y ocho metros, porque absorbe las radiaciones rojas. Sus constantes físicas sirvieron para marcar los puntos de referencia de la escala termométrica Centígrada. A la presión atmosférica de 760 milímetros el agua hierve a temperatura de 100°C y el punto de ebullición se eleva a 374°, que es la temperatura critica a que corresponde la presión de 217,5 atmósferas; en todo caso el calor de vaporización del agua asciende a 539 calorías/gramo a 100°.
Mientras que el hielo funde en cuanto se calienta por encima de su punto de fusión, el agua liquida se mantiene sin solidificarse algunos grados por debajo de la temperatura de cristalización (agua subenfriada) y puede conservarse liquida a –20° en tubos capilares o en condiciones extraordinarias de reposo. La solidificación del agua va acompañada de desprendimiento de 79,4 calorías por cada gramo de agua que se solidifica. Cristaliza en el sistema hexagonal y adopta formas diferentes, según las condiciones de cristalización.
A consecuencia de su elevado calor especifico y de la gran cantidad de calor que pone en juego cuando cambia su estado, el agua obra de excelente regulador de temperatura en la superficie de la Tierra y más en las regiones marinas.
El agua se comporta anormalmente; su presión de vapor crece con rapidez a medida que la temperatura se eleva y su volumen ofrece la particularidad de ser mínimo a la de 4°. A dicha temperatura la densidad del agua es máxima, y se ha tomado por unidad. A partir de 4° no sólo se dilata cuando la temperatura se eleva,. sino también cuando se enfría hasta 0°: a esta temperatura su densidad es 0,99980 y al congelarse desciende bruscamente hacia 0,9168, que es la densidad del hielo a 0°, lo que significa que en la cristalización su volumen aumenta en un 9 por 100.
Las propiedades físicas del agua se atribuyen principalmente a los enlaces por puente de hidrógeno, los cuales se presentan en mayor número en el agua sólida, en la red cristalina cada átomo de la molécula de agua está rodeado tetraédricamente por cuatro átomos de hidrógeno de otras tantas moléculas de agua y así sucesivamente es como se conforma su estructura. Cuando el agua sólida (hielo) se funde la estructura tetraédrica se destruye y la densidad del agua líquida es mayor que la del agua sólida debido a que sus moléculas quedan más cerca entre sí, pero sigue habiendo enlaces por puente de hidrógeno entre las moléculas del agua líquida. Cuando se calienta agua sólida, que se encuentra por debajo de la temperatura de fusión, a medida que se incrementa la temperatura por encima de la temperatura de fusión se debilita el enlace por puente de hidrógeno y la densidad aumenta más hasta llegar a un valor máximo a la temperatura de 3.98ºC y una presión de una atmósfera. A temperaturas mayores de 3.98 ºC la densidad del agua líquida disminuye con el aumento de la temperatura de la misma manera que ocurre con los otros líquidos.

3. Propiedades Químicas del Agua
1) Reacciona con los óxidos ácidos2) Reacciona con los óxidos básicos3) Reacciona con los metales 4) Reacciona con los no metales5) Se une en las sales formando hidratos
1) los anhídridos u óxidos ácidos reaccionan con el agua y forman ácidos oxácidos.2) Los óxidos de los metales u óxidos básicos reaccionan con el agua para formar hidróxidos. Muchos óxidos no se disuelven en el agua, pero los óxidos de los metales activos se combinan con gran facilidad.3) Algunos metales descomponen el agua en frío y otros lo hacían a temperatura elevada.4) El agua reacciona con los no metales, sobre todo con los halógenos, por ej: Haciendo pasar carbón al rojo sobre el agua se descompone y se forma una mezcla de monóxido de carbono e hidrógeno (gas de agua).5) El agua forma combinaciones complejas con algunas sales, denominándose hidratos.En algunos casos los hidratos pierden agua de cristalización cambiando de aspecto, y se dice que son eflorescentes, como le sucede al sulfato cúprico, que cuando está hidratado es de color azul, pero por pérdida de agua se transforma en sulfato cúprico anhidro de color blanco.
Por otra parte, hay sustancias que tienden a tomar el vapor de agua de la atmósfera y se llaman hidrófilas y también higroscópicas; la sal se dice entonces que delicuesce, tal es el caso del cloruro cálcico.
El agua como compuesto químico:Habitualmente se piensa que el agua natural que conocemos es un compuesto químico de fórmula H2O, pero no es así, debido a su gran capacidad disolvente toda el agua que se encuentra en la naturaleza contiene diferentes cantidades de diversas sustancias en solución y hasta en suspensión, lo que corresponde a una mezcla.
El agua químicamente pura es un compuesto de fórmula molecular H2O. Como el átomo de oxígeno tiene sólo 2 electrones no apareados, para explicar la formación de la molécula H2O se considera que de la hibridación de los orbitales atómicos 2s y 2p resulta la formación de 2 orbitales híbridos sp3. El traslape de cada uno de los 2 orbitales atómicos híbridos con el orbital 1s1 de un átomo de hidrógeno se forman dos enlaces covalentes que generan la formación de la molécula H2O, y se orientan los 2 orbitales sp3 hacia los vértices de un tetraedro triangular regular y los otros vértices son ocupados por los pares de electrones no compartidos del oxígeno. Esto cumple con el principio de exclusión de Pauli y con la tendencia de los electrones no apareados a separarse lo más posible. Experimentalmente se encontró que el ángulo que forman los 2 enlaces covalentes oxígeno-hidrógeno es de 105º y la longitud de enlace oxígeno-hidrógeno es de 0.96 angstroms y se requiere de 118 kcal/mol para romper uno de éstos enlaces covalentes de la molécula H2O. Además, el que el ángulo experimental de enlace sea menor que el esperado teóricamente (109º) se explica como resultado del efecto de los 2 pares de electrones no compartidos del oxígeno que son muy voluminosos y comprimen el ángulo de enlace hasta los 105º. Las fuerzas de repulsión se deben a que los electrones tienden a mantenerse separados al máximo (porque tienen la misma carga) y cuando no están apareados también se repelen (principio de exclusión de Pauli). Además núcleos atómicos de igual carga se repelen mutuamente. Las fuerzas de atracción se deben a que los electrones y los núcleos se atraen mutuamente porque tienen carga opuesta, el espín opuesto permite que 2 electrones ocupen la misma región pero manteniéndose alejados lo más posible del resto de los electrones. La estructura de una molécula es el resultado neto de la interacción de las fuerzas de atracción y de repulsión (fuerzas intermoleculares), las que se relacionan con las cargas eléctricas y con el espín de los electrones. De acuerdo con la definición de ácido y álcali de Brönsted-Lowry, los 2 pares de electrones no compartidos del oxígeno en la molécula H2O le proporciona características alcalinas. Los 2 enlaces covalentes de la molécula H2O son polares porque el átomo de oxígeno es más electronegativo que el de hidrógeno, por lo que esta molécula tiene un momento dipolar electrostático igual a 6.13x10-30 (coulombs)(angstrom), lo que también indica que la molécula H2O no es lineal, H-O-H. El agua es un compuesto tan versátil principalmente debido a que el tamaño de su molécula es muy pequeño, a que su molécula es buena donadora de pares de electrones, a que forma puentes de hidrógeno entre sí y con otros compuestos que tengan enlaces como: N-H, O-H y F-H, a que tiene una constante dieléctrica muy grande y a su capacidad para reaccionar con compuestos que forman otros compuestos solubles. El agua es, quizá el compuesto químico más importante en las actividades del hombre y también más versátil, ya que como reactivo químico funciona como ácido, álcali, ligando, agente oxidante y agente reductor.
Difusión Proceso mediante el cual ocurre un flujo de partículas (átomos, iones o moléculas) de una región de mayor concentración a una de menor concentración, provocado por un gradiente de concentración. Si se coloca un terrón de azúcar en el fondo de un vaso de agua, el azúcar se disolverá y se difundirá lentamente a través del agua, pero si no se remueve el líquido pueden pasar semanas antes de que la solución se aproxime a la homogeneidad.
ÓsmosisFenómeno que consiste en el paso del solvente de una solución de menor concentración a otra de mayor concentración que las separe una membrana semipermeable, a temperatura constante. En la ósmosis clásica, se introduce en un recipiente con agua un tubo vertical con el fondo cerrado con una membrana semipermeable y que contiene una disolución de azúcar. A medida que el agua pasa a través de la membrana hacia el tubo, el nivel de la disolución de azúcar sube visiblemente. Una membrana semipermeable idónea para este experimento es la que existe en el interior de los huevos, entre la clara y la cáscara. En este experimento, el agua pasa en ambos sentidos a través de la membrana. Pasa más cantidad de agua hacia donde se encuentra la disolución concentrada de azúcar, pues la concentración de agua es mayor en el recipiente con agua pura; o lo que es lo mismo, hay en ésta menos sustancias diluidas que en la disolución de azúcar. El nivel del líquido en el tubo de la disolución de azúcar se elevará hasta que la presión hidrostática iguale el flujo de moléculas de disolvente a través de la membrana en ambos sentidos. Esta presión hidrostática recibe el nombre de presión osmótica. Numerosos principios de la física y la química intervienen en el fenómeno de la ósmosis en animales y plantas.
CapilaridadEs el ascenso o descenso de un líquido en un tubo de pequeño diámetro (tubo capilar), o en un medio poroso (por ej. un suelo), debido a la acción de la tensión superficial del líquido sobre la superficie del sólido. Este fenómeno es una excepción a la ley hidrostática de los vasos comunicantes, según la cual una masa de líquido tiene el mismo nivel en todos los puntos; el efecto se produce de forma más marcada en tubos capilares, es decir, tubos de diámetro muy pequeño. La capilaridad, o acción capilar, depende de las fuerzas creadas por la tensión superficial y por el mojado de las paredes del tubo. Si las fuerzas de adhesión del líquido al sólido (mojado) superan a las fuerzas de cohesión dentro del líquido (tensión superficial), la superficie del líquido será cóncava y el líquido subirá por el tubo, es decir, ascenderá por encima del nivel hidrostático. Este efecto ocurre por ejemplo con agua en tubos de vidrio limpios. Si las fuerzas de cohesión superan a las fuerzas de adhesión, la superficie del líquido será convexa y el líquido caerá por debajo del nivel hidrostático. Así sucede por ejemplo con agua en tubos de vidrio grasientos (donde la adhesión es pequeña) o con mercurio en tubos de vidrio limpios (donde la cohesión es grande). La absorción de agua por una esponja y la ascensión de la cera fundida por el pabilo de una vela son ejemplos familiares de ascensión capilar. El agua sube por la tierra debido en parte a la capilaridad, y algunos instrumentos de escritura como la pluma estilográfica (fuente) o el rotulador (plumón) se basan en este principio
Animales De Agua Dulce La composición de las comunidades de agua dulce depende más del clima que las de agua salada. Los océanos cubren vastas extensiones y se entremezclan entre ellos, esto no ocurre con las masas de agua dulce. Por esta razón, la propagación de las especies de agua dulce está mucho más limitada que la de las especies de agua salada. La variación en la composición química es mayor en las aguas del interior que en las de los océanos, ya que los minerales disueltos en el agua dulce no pueden dispersarse en áreas tan extensas como en aquéllos. Sin embargo, considerando estas limitaciones, existen dos grandes divisiones de las aguas dulces del interior: aguas corrientes y aguas estancadas. En general, las primeras están en relación con el mar, y una parte importante de la población animal proviene del gran número de especies oceánicas que penetran en los ríos. La rapidez de las corrientes en las aguas libres requiere que los animales sean grandes nadadores (como el salmón), habitantes de las profundidades (como el cangrejo de río), o formas que pueden fijarse a las rocas, plantas acuáticas, o detritos (como la sanguijuela). Las aguas estancadas experimentan pequeñas fluctuaciones, de modo que las formas sedentarias y de natación lenta son abundantes en estas zonas. Las cuencas de agua estancada reúnen una mayor cantidad de detritos orgánicos que las que fluyen, lo que hace posible la existencia de poblaciones vegetales tan grandes como para facilitar un aporte abundante de alimentos a la población animal.
Animales De Agua Salada Se ha descrito un gran número de especies de ballenas y peces depredadores en todos los mares. Sin embargo, la mayoría de los animales acuáticos están limitados a unas áreas climáticas relativamente definidas. En general, los animales no abandonan su zona climática y, cuando una zona está dividida por masas terrestres, evitan el paso a otras masas de agua dentro de la misma zona.
Las condiciones medio ambientales en las aguas profundas son muy diferentes según el nivel de profundidad. La temperatura del agua desciende y la presión aumenta a medida que se avanza hacia el fondo. Las posibilidades de alimentarse, que dependen del número y tipo de plantas y animales que existan, varían también mucho con la profundidad. Un animal acuático que sólo puede sobrevivir en profundidades de 6.000 a 7.000 m, no puede cruzar una cordillera del suelo del océano si su cresta se encuentra sólo a 3.000 m por debajo de la superficie.
Suponiendo que exista una relativa uniformidad de temperatura, presión y condiciones alimentarias, los hábitats de agua salada pueden ser divididos en tres zonas: litoral, pelágica y abisal. El litoral incluye las regiones costeras de océanos y mares, desde la orilla del mar hasta una profundidad de aproximadamente 180 m. La población animal incluye una gran cantidad de seres vivos propios de la zona de orilla como corales, mejillones, artrópodos superiores y peces. La zona pelágica comprende la columna de agua del mar abierto de idéntica profundidad que la del litoral. Muchas formas pelágicas, como las medusas y los peces verdaderos equipados con cámaras de aire, están adaptados para flotar, aunque la mayoría de los habitantes de esta zona son capaces de nadar. La zona abisal es el fondo oscuro y profundo del océano. Esta región carece prácticamente de vida vegetal, pero los habitantes abisales, como los cangrejos, se alimentan de organismos muertos que se hunden desde la superficie. En este entorno, las comunidades de plantas y animales que viven en las grietas hidrotermales, donde la cadena alimenticia se basa en bacterias que digieren azufre, son únicas.
Agua SubterráneaAgua que se encuentra bajo la superficie terrestre. Se encuentra en el interior de poros entre partículas sedimentarias y en las fisuras de las rocas más sólidas. En las regiones árticas el agua subterránea puede helarse. En general mantiene una temperatura muy similar al promedio anual en la zona.
El agua subterránea más profunda puede permanecer oculta durante miles o millones de años. No obstante, la mayor parte de los yacimientos están a poca profundidad y desempeñan un papel discreto pero constante dentro del ciclo hidrológico. A nivel global, el agua subterránea representa cerca de un tercio de un uno por ciento del agua de la Tierra, es decir unas 20 veces más que el total de las aguas superficiales de todos los continentes e islas.
El agua subterránea es de esencial importancia para la civilización porque supone la mayor reserva de agua potable en las regiones habitadas por los seres humanos. El agua subterránea puede aparecer en la superficie en forma de manantiales, o puede ser extraída mediante pozos. En tiempos de sequía, puede servir para mantener el flujo de agua superficial, pero incluso cuando no hay escasez, el agua subterránea es preferible porque no tiende a estar contaminada por residuos o microorganismos.
La movilidad del agua subterránea depende del tipo de rocas subterráneas en cada lugar dado. Las capas permeables saturadas capaces de aportar un suministro útil de agua son conocidas como acuíferos. Suelen estar formadas por arenas, gravas, calizas o basaltos. Otras capas, como las arcillas, pizarras, morrenas glaciares y limos tienden a reducir el flujo del agua subterránea. Las rocas impermeables son llamadas acuífugas, o rocas basamentarias. En zonas permeables, la capa superficial del área de saturación de agua se llama nivel freático. Cuando en lugares muy poblados o zonas áridas muy irrigadas se extrae agua del subsuelo demasiado deprisa, el nivel freático puede descender con gran rapidez, haciendo que sea imposible acceder a él, aún recurriendo a pozos muy profundos.
Aunque el agua subterránea está menos contaminada que la superficial, la contaminación de este recurso también se ha convertido en una preocupación en los países industrializados.
Agua PesadaIsótopo de hidrógeno, estable y no radiactivo, con una masa atómica de 2,01363, y de símbolo D o 2H. Se conoce también como hidrógeno pesado, al ser su masa atómica aproximadamente el doble de la del hidrógeno normal, aunque ambos tienen las mismas propiedades químicas. El hidrógeno, tal como se da en la naturaleza, contiene un 0,02% de deuterio. Este isótopo tiene un punto de ebullición de -249,49 °C, 3,28 °C más alto que el del hidrógeno. El agua pesada (óxido de deuterio, D2O) tiene un punto de ebullición de 101,42 °C (en el agua normal es de 100 °C); tiene un punto de congelación de 3,81 °C (en el agua normal es de 0 °C), y a temperatura ambiente su densidad es un 10,79% mayor que la del agua normal.
El químico estadounidense Harold Clayton Urey, junto con sus colaboradores, descubrió el deuterio en 1932; consiguió separar el primer isótopo en estado puro de un elemento. Los métodos más eficaces utilizados para separar el deuterio del hidrógeno natural son la destilación fraccionada del agua y el proceso de intercambio catalítico entre agua e hidrógeno. En este último, al combinar agua e hidrógeno en presencia de un catalizador apropiado, se forma deuterio en el agua en una cantidad tres veces superior que en el hidrógeno. El deuterio también se puede concentrar por electrólisis, centrifugación y destilación fraccionada del hidrógeno líquido.
El núcleo de los átomos de deuterio, llamado deuterón, es muy útil para la investigación en el campo de la física, ya que puede ser acelerado fácilmente por ciclotrones y otros aparatos semejantes, utilizándose como proyectil atómico en la transmutación de elementos. El deuterio también tiene importantes aplicaciones en la investigación biológica y se usa como isótopo trazador en el estudio de los problemas del metabolismo.
Durante la II Guerra Mundial, el agua pesada se empleó como agente moderador en los primeros tipos de reactores nucleares, aunque el grafito ha ido ocupando su lugar gradualmente. El deuterio, en forma de óxido de deuterio o de deuteruro de litio, es, junto con el tritio, un componente esencial de las armas de fusión nuclear, también llamadas bombas de hidrógeno.
Agua MineralAgua de manantial que contiene sales minerales o gases y que, por tanto, puede tener efectos diferentes sobre el cuerpo humano que el agua corriente. Las aguas minerales se han empleado como remedio desde la más remota antigüedad, y eran familiares para los antiguos griegos y romanos. Acostumbran a clasificarse en alcalinas, salinas, ferruginosas, sulfurosas, aciduladas y arseniosas. Las aguas minerales más notables son las de Vichy, Tehuacán, Apollinaris y Caldas de Malavella, bicarbonatadas; Apenta, Friedrichhall y Ledesma, aguas salinas ricas en sulfatos; Karlovy Vary, Marienbad, Solares y Cestona, ricas en cloruro sódico; Lanjarón, ferruginosa; Aquisgrán, Baden y Aix-les-Bains, sulfurosas; Bath y Baden, arseniosas; y Panticosa, rica en nitrógeno